模拟电路设计(12)--- 运算放大器闭环增益计算及放大器电路稳定性分析

这篇具有很好参考价值的文章主要介绍了模拟电路设计(12)--- 运算放大器闭环增益计算及放大器电路稳定性分析。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

闭环增益计算

运算放大器深度负反馈状态,放大电路的增益为1/F(s)。而在实际应用中很少去计算F(s),一般通过深度负反馈时的“虚短”、“虚断”概念去计算。深度负反馈时,1+A(s)F(s) > >1,则A(s)F(s) = Xf(s)/X’i(s)> >1,而Xi(s)=X’i(s)+Xf(s),那么X’i(s)可以忽略不计,Xi(s)=Xf(s)。

对于深度串联负反馈,则有Ui(s)=Uf(s);对于深度并联负反馈,则有Ii(s)=If(s)。

运放闭环增益,模拟电路,硬件工程,嵌入式硬件

虚短、虚断示意图

如图所示,Ui加在同相输入端,同相输入端电压U+=Ui,反馈电压加在反相输入端,反相输入端电压U-=Uf,由Ui≈Uf,则U-=U+,此时,运放两个输入端之间近似短路,但又不是真正的短路,我们称为“虚短”。又因为运放的差模输入电阻Rid很大,所以当Uid=U+-U-≈0时,可以近似认为流入运放同相输入端I+和反相输入端I-电流都为0,但又不是真正的断路,我们称为“虚断”。根据这两点可以计算图中的闭环增益:

运放闭环增益,模拟电路,硬件工程,嵌入式硬件

放大器电路稳定性分析

放大器的稳定性分析,都是基于闭环增益分析,如下式所示,应用于放大器的频率响应借助波特图分析。

运放闭环增益,模拟电路,硬件工程,嵌入式硬件

放大器对不同频率的正弦信号的稳态响应称为频率响应。放大器的频率表响应可以直接由放大器的放大倍数对频率的关系来描述,如下所示。

运放闭环增益,模拟电路,硬件工程,嵌入式硬件

其中,Av(ω)表示电压放大倍数和频率f的关系,称为幅频响应,而Ф(ω),表示放大器输出电压与输入电压之间的相位差和频率的关系,称为相频响应。两者综合起来可全面表征放大器的频率响应。在半对数坐标图(半对数坐标系一个轴是分度均匀的普通坐标轴,另一个轴是分度不均匀的对数坐标轴)上,一般频率采用对数分度,幅值(以db表示的电压增益)或者相角则采用线性分度。那么,这两张半对数坐标图就称为对数频率响应或波特图。

由闭环增益的算式可知,1+A(s)F(s)=0时,放大器电路会发生自激振荡,那么放大器稳定性分析就是分析1+A(s)F(s)是否等于0,那么将拉式变换转换成傅氏变换,可得自激振荡时,A(jω)F(jω)=-1。故|A(jω)F(jω)|=1,∠A(jω)F(jω)=-180°。因此,自激振荡或正反馈表现在波特图上即幅频响应图中,20lg|A(jω)|和20lg|F(jω)|曲线相交时,对应频率处的相角小于等于-180°。一般采用折线法画出电路的波特图,下面举例分析下图的波特图:

运放闭环增益,模拟电路,硬件工程,嵌入式硬件

虚短、虚断示意图

由于一般情况下,Rf/Ri>>1,故F(s)≈Rf/Ri/(1+sRfCf)。然后分析幅频响应,近似画出20lg|F(jω)|的曲线,由

运放闭环增益,模拟电路,硬件工程,嵌入式硬件

可得20lg|F(jω)|=-20lg|Rf/Ri/(1+(jωRfCf))|。那么,当ω<<1/RfCf时,20lg|F(jω)|≈-20lg|Rf/Ri|,当ω>>1/RfCf时,20lg|F(jω)|≈-20lg|Rf/Ri/(jωRfCf)|。因此,在波特图中,ω<1/RfCf时,20lg|F(jω)|是一条直线,ω>1/RfCf时,20lg|F(jω)|是一条斜线,相交点的频率为ω=1/RfCf,如下图所示:

运放闭环增益,模拟电路,硬件工程,嵌入式硬件

波特图

同理ω<<1/RfCf时,∠F(jω)=∠Rf/Ri=0°,当ω>>1/RfCf时,∠F(jω)=∠Rf/Ri/(jωRfCf)=-90°,当ω=1/RfCf时,∠F(jω)=-45°。分析放大器稳定,主要是检查∠A(jω)F(jω),还需要开环增益的幅频曲线,一般从器件资料中查看。现举例分析图中曲线,上图中粗黑线表示20lg|F(jω)|,相频特性是根据20lg|A(jω)F(jω)| = 20lg|A(jω)|-20lg1/|F(jω)|得到。可以看到20lg|A(jω)|和20lg1/|F(jω)|曲线相交时,对应相角大约是-100°大于-180°电路稳定。我们可以看到,在fc之前,相角达到了-135°,若20lg1/|F(jω)|曲线拐点再往高频移动一些,fc或fc之前对应的相角就有可能达到-180°,从而使电路处于不稳定状态。

另外,整理了一些电子工程类的资料,分享给大家,目前有模拟电路、单片机、C语言、PCB设计、电源相关、FPGA、EMC、物联网、Linux相关学习资料,还有针对大学生的资料包,后续还会有更多资料分享给大家,助力大家学习,成就梦想~

博主福利:免费获取电子工程类学习资料~https://mp.weixin.qq.com/mp/appmsgalbum?__biz=MzkzOTM5NTE0OQ==&action=getalbum&album_id=2532293941282209792#wechat_redirect文章来源地址https://www.toymoban.com/news/detail-569416.html

到了这里,关于模拟电路设计(12)--- 运算放大器闭环增益计算及放大器电路稳定性分析的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 运算放大器的差分放大电路

    差分放大电路利用电路参数的对称性和负反馈作用,有效地稳定静态工作点,以放大差模信号抑制共模信号为显著特征,广泛应用于直接耦合电路和测量电路的输入级。但是差分放大电路结构复杂、分析繁琐,特别是其对差模输入和共模输入信号有不同的分析方法,难以理解

    2023年04月09日
    浏览(35)
  • 硬件设计基础----运算放大器

    运算放大器(运放)用于 调节和放大 模拟信号,运放是一个内含多级放大电路的集成器件,如图所示: 左图为同相位,Vn端接地或稳定的电平,Vp端电平上升,则输出端Vo电平上升,Vp端电平下降,则输出端Vo电平下降;右图为反相位,Vp端接地或稳定的电平,Vn端电平上升,则输

    2023年04月12日
    浏览(26)
  • 运算放大器设计及应用参讨(二)

    1.用单电源做高低通滤波器 问: 双电源做高低通滤波器,那是一点问题都没,但要在单电源中做好好像不是很好,曲线老是不好,有高手可以帮忙吗? 答: (1) 单电源供电作有源滤波器的确很麻烦,关键问题是一个滤波器往往不只一节,各节的直流工作点很难协调。双电源

    2024年02月13日
    浏览(186)
  • 电路设计小实验———音频信号放大器

    提示:记录软件学习过程,写得不好多多包涵 提示:

    2024年02月10日
    浏览(33)
  • 集成放大器 电路 分析 设计过程中的概念和要点

    集成运放的三大特性:虚短、虚断、    和  虚地 把这几个特性理解明白了, 后面的电路分析就很容易上手。 虚短:UP=UN,两输入端电压相等。 虚断:IP=IN=0,两输入端的输入电流为0。 虚地:UP=UN=0,当信号在反向输入时存在(即信号从负输入端流进,而正输入端接地,为

    2024年02月11日
    浏览(27)
  • 从零开始学运算放大器笔记一 | 认识运算放大器

    1. 运算放大器简介  2. 运算放大器的分析前提 3. 运算放大器的重要参数和测量方法(一)          运算放大器(又称”运放“,英文全拼为Operation Amplifier,缩写为OP AMP)是一种模拟电路模块,它采用差分电压输入,产生单端电压输出。它可以对输入信号进行放大以及加、

    2024年02月14日
    浏览(33)
  • 运算放大器:电压比较器、电压跟随器、同相比例放大器

      最近在学习电机控制,遇到了与运算放大电路相关的知识,然而太久没有接触模拟电路,对该知识已经淡忘了,及时温故而知新,做好笔记,若有错误、不足的地方,希望您能提出来,大家一起学习、提升。 注意:Uref是同相输入端的,Ui是反向输入端的。   一般的单

    2024年02月02日
    浏览(33)
  • 初识运算放大器(跟随器,比较器,同向/反向放大器,差分放大器,微分器,积分器)

    (本人为电子学生小白,以下是个人学习过程中的归纳总结,如有错误,欢迎指正) 虚断:输入电阻很大 虚短:开环线性区,深度负反馈 定义:跟随器是一种电子线路,其输出信号基本等同于输入信号,但提高了带负载能力,广泛存在于各类电子线路中。(来自百度) 如图

    2024年02月07日
    浏览(30)
  • 运算放大器基础(二)

    集成运放两个工作区: 线性区、非线性区

    2024年02月15日
    浏览(28)
  • 带你理解运算放大器

    最近在某个传感器产品上面用到了运算放大器,然后在进行电路设计的时候遇到一些细节,还去翻阅笔记,查找了相关的资料。 运放作为电子设计的基础元器件之一,在我的博文中还不曾来好好说明介绍一下,正好借此机会, 我们从应用的角度来聊一聊运算放大器。 我是矜

    2024年02月01日
    浏览(49)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包