深度学习——RNN解决回归问题

这篇具有很好参考价值的文章主要介绍了深度学习——RNN解决回归问题。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

详细代码与注释

import torch
from torch import nn
import numpy as np
import matplotlib.pyplot as plt

# 有利于复现代码
# torch.manual_seed(1)    # reproducible

# Hyper Parameters
TIME_STEP = 10  # rnn time step
# 输入sin函数的y值,所以输入尺寸为1
INPUT_SIZE = 1  # rnn input size
LR = 0.02  # learning rate

# show data
steps = np.linspace(0, np.pi * 2, 100, dtype=np.float32)  # float32 for converting torch FloatTensor
x_np = np.sin(steps)
y_np = np.cos(steps)
plt.plot(steps, y_np, 'r-', label='target (cos)')
plt.plot(steps, x_np, 'b-', label='input (sin)')
plt.legend(loc='best')
plt.show()


# 搭建RNN
class RNN(nn.Module):
    def __init__(self):
        super(RNN, self).__init__()

        # RNN层
        self.rnn = nn.RNN(
            input_size=INPUT_SIZE,
            hidden_size=32,  # rnn hidden unit
            num_layers=1,  # number of rnn layer
            batch_first=True,  # input & output will has batch size as 1s dimension. e.g. (batch, time_step, input_size)
        )
        # 输出层
        self.out = nn.Linear(32, 1)

    def forward(self, x, h_state):
        # x (batch, time_step, input_size)
        # h_state (n_layers, batch, hidden_size)
        # r_out (batch, time_step, hidden_size)
        r_out, h_state = self.rnn(x, h_state)

        outs = []  # save all predictions
        for time_step in range(r_out.size(1)):  # calculate output for each time step
            outs.append(self.out(r_out[:, time_step, :]))
        return torch.stack(outs, dim=1), h_state

        # instead, for simplicity, you can replace above codes by follows
        # r_out = r_out.view(-1, 32)
        # outs = self.out(r_out)
        # outs = outs.view(-1, TIME_STEP, 1)
        # return outs, h_state

        # or even simpler, since nn.Linear can accept inputs of any dimension
        # and returns outputs with same dimension except for the last
        # outs = self.out(r_out)
        # return outs


rnn = RNN()
print(rnn)

optimizer = torch.optim.Adam(rnn.parameters(), lr=LR)  # optimize all cnn parameters
loss_func = nn.MSELoss()

h_state = None  # for initial hidden state

# 绘图
plt.figure(1, figsize=(12, 5))
# 动态绘制
plt.ion()  # continuously plot

for step in range(100):
    start, end = step * np.pi, (step + 1) * np.pi  # time range
    # use sin predicts cos
    steps = np.linspace(start, end, TIME_STEP, dtype=np.float32,
                        endpoint=False)  # float32 for converting torch FloatTensor
    x_np = np.sin(steps)
    y_np = np.cos(steps)

    x = torch.from_numpy(x_np[np.newaxis, :, np.newaxis])  # shape (batch, time_step, input_size)
    y = torch.from_numpy(y_np[np.newaxis, :, np.newaxis])

    prediction, h_state = rnn(x, h_state)  # rnn output
    # !! next step is important !!
    h_state = h_state.data  # repack the hidden state, break the connection from last iteration

    loss = loss_func(prediction, y)  # calculate loss
    optimizer.zero_grad()  # clear gradients for this training step
    loss.backward()  # backpropagation, compute gradients
    optimizer.step()  # apply gradients

    # plotting
    plt.plot(steps, y_np.flatten(), 'r-')
    plt.plot(steps, prediction.data.numpy().flatten(), 'b-')
    plt.draw()
    plt.pause(0.05)

plt.ioff()
plt.show()

运行效果

深度学习——RNN解决回归问题,深度学习,PyTorch,深度学习,rnn,回归
深度学习——RNN解决回归问题,深度学习,PyTorch,深度学习,rnn,回归

深度学习——RNN解决回归问题,深度学习,PyTorch,深度学习,rnn,回归文章来源地址https://www.toymoban.com/news/detail-570524.html

到了这里,关于深度学习——RNN解决回归问题的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 深度学习05-RNN循环神经网络

    循环神经网络(Recurrent Neural Network,RNN)是一种具有循环连接的神经网络结构,被广泛应用于自然语言处理、语音识别、时序数据分析等任务中。相较于传统神经网络,RNN的主要特点在于它可以处理序列数据,能够捕捉到序列中的时序信息。 RNN的基本单元是一个循环单元(

    2024年02月12日
    浏览(47)
  • 深度学习(2)---循环神经网络(RNN)

     1. 在深度学习中,序列数据(Sequence data)是指具有 前后顺序关联 的数据。常见的时间序列数据、文本数据(单词序列或字符序列)、语音数据等。这种数据不仅十分常见,而且往往具有很高的应用价值,比如我们可以通过过去的天气数据来预测未来的天气状况,通过以往

    2024年02月07日
    浏览(50)
  • 机器学习&&深度学习——NLP实战(情感分析模型——RNN实现)

    👨‍🎓作者简介:一位即将上大四,正专攻机器学习的保研er 🌌上期文章:机器学习深度学习——NLP实战(情感分析模型——数据集) 📚订阅专栏:机器学习深度学习 希望文章对你们有所帮助 与词相似度和类比任务一样,我们也可以将预先训练的词向量应用于情感分析。

    2024年02月11日
    浏览(35)
  • 机器学习&&深度学习——RNN的从零开始实现与简洁实现

    👨‍🎓作者简介:一位即将上大四,正专攻机器学习的保研er 🌌上期文章:机器学习深度学习——循环神经网络RNN 📚订阅专栏:机器学习深度学习 希望文章对你们有所帮助 我们将在之前所说的《时光机器》数据集上训练,先读取数据集: 回想一下,在train_iter中,每个词

    2024年02月13日
    浏览(44)
  • 深度学习实战——循环神经网络(RNN、LSTM、GRU)

           忆如完整项目/代码详见github: https://github.com/yiru1225 (转载标明出处 勿白嫖 star for projects thanks) 目录 系列文章目录 一、实验综述 1.实验工具及内容 2.实验数据 3.实验目标 4.实验步骤 二、循环神经网络综述 1.循环神经网络简介 1.1 循环神经网络背景 1.2 循环神经网络

    2023年04月24日
    浏览(44)
  • MLP/CNN/RNN/Transformer主流深度学习模型的区别

    1. 多层感知机(MLP) 核心特征 : 结构 :MLP 是一种基本的前馈神经网络,包含一个输入层、一个或多个隐藏层以及一个输出层。每层由全连接的神经元组成。 用途 :适用于简单的分类和回归任务。 限制 :不适用于处理序列数据或图像数据,因为它不具备处理输入之间时间

    2024年04月26日
    浏览(44)
  • 深度学习4. 循环神经网络 – Recurrent Neural Network | RNN

    目录 循环神经网络 – Recurrent Neural Network | RNN 为什么需要 RNN ?独特价值是什么? RNN 的基本原理 RNN 的优化算法 RNN 到 LSTM – 长短期记忆网络 从 LSTM 到 GRU RNN 的应用和使用场景 总结 百度百科+维基百科 卷积神经网络和普通的算法大部分都是输入和输出的一一对应,也就是一

    2024年02月11日
    浏览(45)
  • Pytorch 对比TensorFlow 学习:Day 17-18: 循环神经网络(RNN)和LSTM

    Day 17-18: 循环神经网络(RNN)和LSTM 在这两天的学习中,我专注于理解循环神经网络(RNN)和长短期记忆网络(LSTM)的基本概念,并学习了它们在处理序列数据时的应用。 1.RNN和LSTM基础: RNN:了解了RNN是如何处理序列数据的,特别是它的循环结构可以用于处理时间序列或连续

    2024年01月20日
    浏览(65)
  • 深度学习-循环神经网络-RNN实现股价预测-LSTM自动生成文本

    基于文本内容及其前后信息进行预测 基于目标不同时刻状态进行预测 基于数据历史信息进行预测 序列模型:输入或者输出中包含有序列数据的模型 突出数据的前后序列关系 两大特点: 输入(输出)元素之间是具有顺序关系。不同的顺序,得到的结果应该是不同的,比如“

    2024年01月24日
    浏览(53)
  • 【深度学习】——循环神经网络RNN及实例气温预测、单层lstm股票预测

           密集连接网络和卷积神经网络都有主要的特点,那就是它们没有记忆。它们单独处理每个输入,在输入和输入之间没有保存任何状态。举个例子:当你在阅读一个句子的时候,你需要记住之前的内容,我们才能动态的了解这个句子想表达的含义。生物智能已渐进的方

    2023年04月24日
    浏览(50)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包