RocketMQ高阶使用

这篇具有很好参考价值的文章主要介绍了RocketMQ高阶使用。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

RocketMQ高阶使用

1. 流程

RocketMQ高阶使用,中间件篇,rocketmq

2. 探讨功能点

  • RocketMQ的顺序消息
  • 消息投递策略
  • 消息保障

3. 顺序消息

3.1 顺序类型
3.1.1 无序消息

无序消息也指普通的消息,Producer 只管发送消息,Consumer 只管接收消息,至于消息和消息之间的顺序并没有保证。

  • Producer 依次发送 orderId 为 1、2、3 的消息
  • Consumer 接到的消息顺序有可能是 1、2、3,也有可能是 2、1、3 等情况,这就是普通消息。
3.1.2 全局顺序

对于指定的一个 Topic,所有消息按照严格的先入先出(FIFO)的顺序进行发布和消费

RocketMQ高阶使用,中间件篇,rocketmq

比如 Producer 发送orderId 1,3,2 的消息, 那么 Consumer 也必须要按照 1,3,2 的顺序进行消费。

3.1.3 局部顺序

在实际开发有些场景中,并不需要消息完全按照完全按的先进先出,而是某些消息保证先进先出就可以了。

3.2 Rocket顺序消息

RocketMQ可以严格的保证消息有序,但这个顺序,不是全局顺序,只是队列(queue)顺序,要全局顺序只能一个队列。

3.2.1 问题分析

举个🌰: 要求相同地区的订单消费要保持严格有序
RocketMQ高阶使用,中间件篇,rocketmq

3.2.1.1 消息发送者

message最终会存放在Queue中,如果一个Topic关联了4个Queue, 如果不指定消息往哪个队列里放,那么默认是平均分配消息到4个queue

所以需要保证同一个queue,存储在里面的message 是按照先进先出的原则

3.2.1.2 消息消费者

对于消费者集群来说, 讲过消费者C1和消费者C2顺序拿到消费后, 但是无法保证谁先消费结束

Rocket采用的是分段锁(分布式锁),它不是锁整个Broker而是锁里面的单个Queue, 谁消费谁就控制锁的加锁和释放锁

3.2.3 消息类型对比

全局顺序与分区顺序对比

Topic消息类型 支持事务消息 支持定时/延时消息 性能
无序消息(普通、事务、定时/延时) 最高
分区顺序消息
全局顺序消息 一般

发送方式对比

Topic消息类型 支持可靠同步发送 支持可靠异步发送 支持Oneway发送
无序消息(普通、事务、定时/延时)
分区顺序消息
全局顺序消息

注意事项

  1. 顺序消息无法支持广播模式。
  2. 顺序消息不支持异步发送方式,否则将无法严格保证顺序。
  3. 建议同一个 Group ID 只对应一种类型的 Topic,即不同时用于顺序消息和无序消息的收发。
  4. 对于全局顺序消息,建议创建broker个数 >=2。
3.3 代码示例
3.3.1 队列选择器

这里根据需要的值使用hash的方式进行消息粘滞

public class SelectorFactory {
    /**
     * 工厂模式获取MessageQueueSelector
     *
     * @param value
     * @return
     */
    public static MessageQueueSelector getMessageQueueSelector(String value) {
        //如果value不为空使用hash选择器
        if (StringUtils.isNotEmpty(value)) {
            return new SelectMessageQueueByHash();
        }
        //如果value为空使用随机选择器
        return new SelectMessageQueueByRandom();
    }
}
3.3.2 消息发送者
@Component
public class MQProducer {

    @Autowired
    DefaultMQProducer defaultMQProducer;

    /**
     * 同步发送消息
     * @param taxiBO
     */
    public void send(TaxiBO taxiBO) {
        if (null == taxiBO) {
            return;
        }
        SendResult sendResult = null;

        try {
            //获取消息对象
            Message message = RocketMQHelper.buildMessage(DispatchConstant.SEQ_TOPIC, taxiBO);
            //根据区域编码获取队列选择器
            MessageQueueSelector selector = SelectorFactory.getMessageQueueSelector(taxiBO.getAreaCode());
            //发送同步消息
            sendResult = defaultMQProducer.send(message, selector, taxiBO.getAreaCode(), 10000);
        } catch (MQClientException e) {
            e.printStackTrace();
        } catch (RemotingException e) {
            e.printStackTrace();
        } catch (MQBrokerException e) {
            e.printStackTrace();
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        if (null != sendResult) {
            System.out.println(sendResult.toString());
        }
    }
}
3.3.3 消息消费者

消费者真正要达到消费顺序,需要分布式锁,所以这里需要将MessageListenerOrderly替换之前的MessageListenerConcurrently,因为它里面实现了分布式锁。

/**
 * 消费消息
 */
public abstract class MQConsumeMessageListenerProcessor implements MessageListenerOrderly {
    public static final Logger logger = LoggerFactory.getLogger(MQConsumeMessageListenerProcessor.class);

    /**
     * 消费有序消息
     *
     * @param list
     * @param consumeOrderlyContext
     * @return
     */
    @Override
    public ConsumeOrderlyStatus consumeMessage(List<MessageExt> list, ConsumeOrderlyContext consumeOrderlyContext) {

        if (CollectionUtils.isEmpty(list)) {
            logger.info("MQ接收消息为空,直接返回成功");
            return ConsumeOrderlyStatus.SUCCESS;
        }
        //消费消息
        for (MessageExt messageExt : list) {
            try {
                String topic = messageExt.getTopic();
                String tags = messageExt.getTags();
                String body = new String(messageExt.getBody(), "utf-8");
                //调用具体消费流程
                processMessage(topic, tags, body);
                logger.info("MQ消息topic={}, tags={}, 消息内容={}", topic, tags, body);
            } catch (Exception e) {
                logger.error("获取MQ消息内容异常{}", e);
                //暂停当前队列
                return ConsumeOrderlyStatus.SUSPEND_CURRENT_QUEUE_A_MOMENT;
            }
        }

        // TODO 处理业务逻辑
        return ConsumeOrderlyStatus.SUCCESS;
    }

    /**
     * 处理消息
     *
     * @param body
     */
    public abstract void processMessage(String topic, String tags, String body);
}

注意ConsumeOrderlyStatus.SUSPEND_CURRENT_QUEUE_A_MOMENT的使用

4. 消息投递策略

RocketMQ 的消息模型整体并不复杂,如下图所示:

RocketMQ高阶使用,中间件篇,rocketmq

一个Topic(消息主题)可能对应多个实际的消息队列(MessgeQueue)

4.1 生产者投递策略

生产者投递策略就是讲如何将一个消息投递到不同的queue中

4.1.1 轮询算法投递

默认投递方式:基于Queue队列轮询算法投递

默认情况下,采用了最简单的轮询算法,这种算法有个很好的特性就是,保证每一个Queue队列的消息投递数量尽可能均匀,算法如下所示:

/**
*  根据 TopicPublishInfo Topic发布信息对象中维护的index,每次选择队列时,都会递增
*  然后根据 index % queueSize 进行取余,达到轮询的效果
*
*/
public MessageQueue selectOneMessageQueue(final TopicPublishInfo tpInfo, final String lastBrokerName) {
        return tpInfo.selectOneMessageQueue(lastBrokerName);
}

/**
*  TopicPublishInfo Topic发布信息对象中
*/
public class TopicPublishInfo {
    //基于线程上下文的计数递增,用于轮询目的
    private volatile ThreadLocalIndex sendWhichQueue = new ThreadLocalIndex();
   

    public MessageQueue selectOneMessageQueue(final String lastBrokerName) {
        if (lastBrokerName == null) {
            return selectOneMessageQueue();
        } else {
            int index = this.sendWhichQueue.getAndIncrement();
            for (int i = 0; i < this.messageQueueList.size(); i++) {
                //轮询计算
                int pos = Math.abs(index++) % this.messageQueueList.size();
                if (pos < 0)
                    pos = 0;
                MessageQueue mq = this.messageQueueList.get(pos);
                if (!mq.getBrokerName().equals(lastBrokerName)) {
                    return mq;
                }
            }
            return selectOneMessageQueue();
        }
    }

    public MessageQueue selectOneMessageQueue() {
        int index = this.sendWhichQueue.getAndIncrement();
        int pos = Math.abs(index) % this.messageQueueList.size();
        if (pos < 0)
            pos = 0;
        return this.messageQueueList.get(pos);
    }
}
4.1.2 顺序投递策略

在有些场景下,需要保证同类型消息投递和消费的顺序性。

例如,假设现在有TOPIC topicTest,该 Topic下有4个Queue队列,该Topic用于传递订单的状态变迁,假设订单有状态:未支付已支付发货中(处理中)发货成功发货失败

在时序上,生产者从时序上可以生成如下几个消息:

订单T0000001:未支付 --> 订单T0000001:已支付 --> 订单T0000001:发货中(处理中) --> 订单T0000001:发货失败

消息发送到MQ中之后,可能由于轮询投递的原因,消息在MQ的存储可能如下:

RocketMQ高阶使用,中间件篇,rocketmq

基于上述的情况,RockeMQ采用了这种实现方案:对于相同订单号的消息,通过一定的策略,将其放置在一个 queue队列中,然后消费者再采用一定的策略(一个线程独立处理一个queue,保证处理消息的顺序性),能够保证消费的顺序性

RocketMQ高阶使用,中间件篇,rocketmq

生产者在消息投递的过程中,使用了 MessageQueueSelector 作为队列选择的策略接口,其定义如下:

public interface MessageQueueSelector {
        /**
         * 根据消息体和参数,从一批消息队列中挑选出一个合适的消息队列
         * @param mqs  待选择的MQ队列选择列表
         * @param msg  待发送的消息体
         * @param arg  附加参数
         * @return  选择后的队列
         */
        MessageQueue select(final List<MessageQueue> mqs, final Message msg, final Object arg);
}
4.1.3 自带实现类
投递策略 策略实现类 说明
随机分配策略 SelectMessageQueueByRandom 使用了简单的随机数选择算法
基于Hash分配策略 SelectMessageQueueByHash 根据附加参数的Hash值,按照消息队列列表的大小取余数,得到消息队列的index
基于机器机房位置分配策略 SelectMessageQueueByMachineRoom 开源的版本没有具体的实现,基本的目的应该是机器的就近原则分配
4.2 消费者分配队列

RocketMQ对于消费者消费消息有两种形式:

  • BROADCASTING:广播式消费,这种模式下,一个消息会被通知到每一个消费者
  • CLUSTERING: 集群式消费,这种模式下,一个消息最多只会被投递到一个消费者上进行消费 模式如下:

RocketMQ高阶使用,中间件篇,rocketmq

对于使用了消费模式为MessageModel.CLUSTERING进行消费时, 并且队列数量>集群中消费者的数(消费者数量大于等于2), 指定消息分配算法
------------------------
注: 如果有一个队列数量小于集群中消费者的数量时, 多出的消费者将是空闲状态

RocketMQ定义了策略接口AllocateMessageQueueStrategy,对于给定的消费者分组,和消息队列列表消费者列表当前消费者应当被分配到哪些queue队列,定义如下:

/**
 * 为消费者分配queue的策略算法接口
 */
public interface AllocateMessageQueueStrategy {

    /**
     * Allocating by consumer id
     *
     * @param consumerGroup 当前 consumer群组
     * @param currentCID 当前consumer id
     * @param mqAll 当前topic的所有queue实例引用
     * @param cidAll 当前 consumer群组下所有的consumer id set集合
     * @return 根据策略给当前consumer分配的queue列表
     */
    List<MessageQueue> allocate(
        final String consumerGroup,
        final String currentCID,
        final List<MessageQueue> mqAll,
        final List<String> cidAll
    );

    /**
     * 算法名称
     *
     * @return The strategy name
     */
    String getName();
}

相应地,RocketMQ提供了如下几种实现:

算法名称 含义
AllocateMessageQueueAveragely 平均分配算法
AllocateMessageQueueAveragelyByCircle 基于环形平均分配算法
AllocateMachineRoomNearby 商业版,基于机房临近原则算法
AllocateMessageQueueByMachineRoom 商业版,基于机房分配算法
AllocateMessageQueueConsistentHash 基于一致性hash算法
AllocateMessageQueueByConfig 基于配置分配算法

为了讲述清楚上述算法的基本原理,先假设一个例子,下面所有的算法将基于这个例子讲解。

假设当前同一个topic下有queue队列 10个,消费者共有4个,如下图所示:

4.2.1 平均分配算法

这里所谓的平均分配算法,并不是指的严格意义上的完全平均,如上面的例子中,10个queue,而消费者只有4个,无法是整除关系,除了整除之外的多出来的queue,将依次根据消费者的顺序均摊。

按照上述例子来看,10/4=2,即表示每个消费者平均均摊2个queue;而10%4=2,即除了均摊之外,多出来2个queue还没有分配,那么,根据消费者的顺序consumer-1consumer-2consumer-3consumer-4,则多出来的2个queue将分别给consumer-1consumer-2

最终,分摊关系如下:

  • consumer-1:3个
  • consumer-2:3个
  • consumer-3:2个
  • consumer-4:2个

RocketMQ高阶使用,中间件篇,rocketmq

4.2.2 环形平均分配

环形平均算法,是指根据消费者的顺序,依次在由queue队列组成的环形图中逐个分配

其基本模式如下:

RocketMQ高阶使用,中间件篇,rocketmq

这种算法最终分配的结果是: consumer-1: #0,#4,#8 consumer-2: #1, #5, # 9 consumer-3: #2,#6 consumer-4: #3,#7

4.2.3 使用方式

默认消费者使用使用了AllocateMessageQueueAveragely平均分配策略

如果需要使用其他分配策略,使用方式如下

//创建一个消息消费者,并设置一个消息消费者组,并指定使用一致性hash算法的分配策略
DefaultMQPushConsumer consumer = new DefaultMQPushConsumer(null,"rocket_test_consumer_group",null,new AllocateMessageQueueConsistentHash());
.....

5. RocketMQ消息保障

5.1 生产端保障

生产端保障需要从一下几个方面来保障

  1. 使用可靠的消息发送方式
  2. 注意生产端重试
  3. 生产禁止自动创建topic
5.1.1 消息发送保障
5.1.1.1 同步发送

发送者向MQ执行发送消息API时,同步等待,直到消息服务器返回发送结果,会在收到接收方发回响应之后才发下一个数据包的通讯方式,这种方式只有在消息完全发送完成之后才返回结果,此方式存在需要同步等待发送结果的时间代价。

RocketMQ高阶使用,中间件篇,rocketmq

简单来说,同步发送就是指 producer 发送消息后,会在接收到 broker 响应后才继续发下一条消息的通信方式。

使用场景

由于这种同步发送的方式确保了消息的可靠性,同时也能及时得到消息发送的结果,故而适合一些发送比较重要的消息场景,比如说重要的通知邮件、营销短信等等,在实际应用中,这种同步发送的方式还是用得比较多的。

注意事项

这种方式具有内部重试机制,即在主动声明本次消息发送失败之前,内部实现将重试一定次数,默认为2次(DefaultMQProducer#getRetryTimesWhenSendFailed),发送的结果存在同一个消息可能被多次发送给broker,这里需要应用的开发者自己在消费端处理幂等性问题。

5.1.1.2 异步发送

异步发送是指发送方发出数据后,不等接收方发回响应,接着发送下个数据包的通讯方式。 MQ 的异步发送,需要用户实现异步发送回调接口(SendCallback

RocketMQ高阶使用,中间件篇,rocketmq

异步发送是指 producer 发出一条消息后,不需要等待 broker 响应,就接着发送下一条消息的通信方式,需要注意的是,不等待 broker 响应,并不意味着 broker 不响应,而是通过回调接口来接收 broker 的响应,所以要记住一点,异步发送同样可以对消息的响应结果进行处理。

使用场景

由于异步发送不需要等待 broker 的响应,故在一些比较注重 RT(响应时间)的场景就会比较适用,比如,在一些视频上传的场景,如视频上传之后需要进行转码,如果使用同步发送的方式来通知启动转码服务,那么就需要等待转码完成才能发回转码结果的响应,由于转码时间往往较长,很容易造成响应超时,此时,如果使用的是异步发送通知转码服务,那么就可以等转码完成后,再通过回调接口来接收转码结果的响应了。

5.1.2 消息发送总结
5.1.2.1 发送方式对比
发送方式 发送 TPS 发送结果反馈 可靠性 适用场景
同步发送 一般 不丢失 重要的通知场景
异步发送 不丢失 比较注重 RT(响应时间)的场景
单向发送 最快 可能丢失 可靠性要求并不高的场景
5.1.2.2 使用场景对比

在实际使用场景中,利用何种发送方式,可以总结如下:

  • 当发送的消息不重要时,采用one-way方式,以提高吞吐量;
  • 当发送的消息很重要是,且对响应时间不敏感的时候采用sync方式;
  • 当发送的消息很重要,且对响应时间非常敏感的时候采用async方式;
5.1.3 发送状态

发送消息时,将获得包含SendStatus的SendResult,首先,假设Message的isWaitStoreMsgOK = true(默认为true),如果没有抛出异常,将始终获得SEND_OK,以下是每个状态的说明列表:

5.1.3.1 FLUSH_DISK_TIMEOUT

如果设置了 FlushDiskType=SYNC_FLUSH (默认是 ASYNC_FLUSH),并且 Broker 没有在 syncFlushTimeout (默认是 5 秒)设置的时间内完成刷盘,就会收到此状态码。

5.1.3.2 FLUSH_SLAVE_TIMEOUT

如果设置为 SYNC_MASTER,并且 slave Broker 没有在 syncFlushTimeout 设定时间内完成同步,就会收到此状态码。

5.1.3.3 SLAVE_NOT_AVAILABLE

如果设置为 SYNC_MASTER,并没有配置 slave Broker,就会收到此状态码。

5.1.3.4 SEND_OK

这个状态可以简单理解为,没有发生上面列出的三个问题状态就是SEND_OK,需要注意的是,SEND_OK 并不意味着可靠,如果想严格确保没有消息丢失,需要开启 SYNC_MASTER or SYNC_FLUSH

5.1.3.5 注意事项

如果收到了 FLUSH_DISK_TIMEOUT, FLUSH_SLAVE_TIMEOUT,意味着消息会丢失,有2个选择,一是无所谓,适用于消息不关紧要的场景,二是重发,但可能产生消息重复,这就需要consumer进行去重控制,如果收到了 SLAVE_NOT_AVAILABLE 就要赶紧通知管理员了。

5.1.4 MQ发送端重试保障

如果由于网络抖动等原因,Producer程序向Broker发送消息时没有成功,即发送端没有收到Broker的ACK,导致最终Consumer无法消费消息,此时RocketMQ会自动进行重试。

DefaultMQProducer可以设置消息发送失败的最大重试次数,并可以结合发送的超时时间来进行重试的处理,具体API如下:

//设置消息发送失败时的最大重试次数
public void setRetryTimesWhenSendFailed(int retryTimesWhenSendFailed) {
   this.retryTimesWhenSendFailed = retryTimesWhenSendFailed;
}

//同步发送消息,并指定超时时间
public SendResult send(Message msg,
                      long timeout) throws MQClientException, RemotingException, MQBrokerException, InterruptedException {
   return this.defaultMQProducerImpl.send(msg, timeout);
5.1.4.1 重试解惑

超时重试针对网上说的超时异常会重试的说法都是错误的

是因为下面测试代码的超时时间设置为5毫秒 ,按照正常肯定会报超时异常,但设置1次重试和3000次的重试,虽然最终都会报下面异常,但输出错误时间报显然不应该是一个级别,但测试发现无论设置的多少次的重试次数,报异常的时间都差不多。

测试代码

public class RetryProducer {
    public static void main(String[] args) throws UnsupportedEncodingException, InterruptedException, RemotingException, MQClientException, MQBrokerException {
        //创建一个消息生产者,并设置一个消息生产者组
        DefaultMQProducer producer = new DefaultMQProducer("rocket_test_consumer_group");

        //指定 NameServer 地址
        producer.setNamesrvAddr("127.0.0.1:9876");
        //设置重试次数(默认2次)
        producer.setRetryTimesWhenSendFailed(300000);
        //初始化 Producer,整个应用生命周期内只需要初始化一次
        producer.start();
        Message msg = new Message(
                /* 消息主题名 */
                "topicTest",
                /* 消息标签 */
                "TagA",
                /* 消息内容 */
                ("Hello Java demo RocketMQ ").getBytes(RemotingHelper.DEFAULT_CHARSET));
        //发送消息并返回结果,设置超时时间 5ms 所以每次都会发送失败
        SendResult sendResult = producer.send(msg, 5);

        System.out.printf("%s%n", sendResult);
        // 一旦生产者实例不再被使用则将其关闭,包括清理资源,关闭网络连接等
        producer.shutdown();
    }
}

揭晓答案

针对这个疑惑,需要查看源码,发现同步发送的时候,超时是不重试的

/**
  * 说明 抽取部分代码
  */
private SendResult sendDefaultImpl(Message msg, final CommunicationMode communicationMode, final SendCallback sendCallback, final long timeout) {

    //1、获取当前时间
    long beginTimestampFirst = System.currentTimeMillis();
    long beginTimestampPrev ;
    //2、去服务器看下有没有主题消息
    TopicPublishInfo topicPublishInfo = this.tryToFindTopicPublishInfo(msg.getTopic());
    if (topicPublishInfo != null && topicPublishInfo.ok()) {
        boolean callTimeout = false;
        //3、通过这里可以很明显看出 如果不是同步发送消息 那么消息重试只有1次
        int timesTotal = communicationMode == CommunicationMode.SYNC ? 1 + this.defaultMQProducer.getRetryTimesWhenSendFailed() : 1;
        //4、根据设置的重试次数,循环再去获取服务器主题消息
        for (times = 0; times < timesTotal; times++) {
            MessageQueue mqSelected = this.selectOneMessageQueue(topicPublishInfo, lastBrokerName);
            beginTimestampPrev = System.currentTimeMillis();
            long costTime = beginTimestampPrev - beginTimestampFirst;
            //5、前后时间对比 如果前后时间差 大于 设置的等待时间 那么直接跳出for循环了 这就说明连接超时是不进行多次连接重试的
            if (timeout < costTime) {
                callTimeout = true;
                break;

            }
            //6、如果超时直接报错
            if (callTimeout) {
                throw new RemotingTooMuchRequestException("sendDefaultImpl call timeout");
            }
        }
    }

异步重试

可以通过以下代码设置异步从重试次数,默认两次

 producer.setRetryTimesWhenSendAsyncFailed(2);

异步重试是通过递归的方式来进行重试的

MQClientAPIImpl#sendMessageAsync
private void sendMessageAsync(... ) throws InterruptedException, RemotingException {
        final long beginStartTime = System.currentTimeMillis();
       .....
  producer.updateFaultItem(brokerName, System.currentTimeMillis() - responseFuture.getBeginTimestamp(), false);
} catch (Exception e) {
    producer.updateFaultItem(brokerName, System.currentTimeMillis() - responseFuture.getBeginTimestamp(), true);
    //发送重试请求
    onExceptionImpl(brokerName, msg, timeoutMillis - cost, request, sendCallback, topicPublishInfo, instance,
                    retryTimesWhenSendFailed, times, e, context, true, producer);
}
.....
MQClientAPIImpl#onExceptionImpl
private void onExceptionImpl(...){
    //获取到当前重试次数
    int tmp = curTimes.incrementAndGet();
    //是否需要重试,并且重试次数小于timesTotal
     if (needRetry && tmp <= timesTotal) {
         ...
         try {
             request.setOpaque(RemotingCommand.createNewRequestId());
             sendMessageAsync(addr, retryBrokerName, msg, timeoutMillis, request, sendCallback, topicPublishInfo, instance,
                              timesTotal, curTimes, context, producer);
         } catch (InterruptedException e1) {
             onExceptionImpl(retryBrokerName, msg, timeoutMillis, request, sendCallback, topicPublishInfo, instance, timesTotal, curTimes, e1,
                             context, false, producer);
             ...
     }

}
5.1.4.2 重试总结

通过这段源码很明显可以看出以下几点

  1. 如果是异步发送默认重试次数是两次,通过递归的方式进行重试
  2. 对于同步而言,超时异常也是不会再去重试
  3. 同步发送重试是在一个for 循环里去重试,所以它是立即重试而不是隔一段时间去重试。
5.1.5 禁止自动创建topic
5.1.5.1 自动创建TOPIC流程

autoCreateTopicEnable设置为true 标识开启自动创建topic

  1. 消息发送时如果根据topic没有获取到 路由信息,则会根据默认的topic去获取,获取到路由信息后选择一个队列进行发送,发送时报文会带上默认的topic以及默认的队列数量。
  2. 消息到达broker后,broker检测没有topic的路由信息,则查找默认topic的路由信息,查到表示开启了自动创建topic,则会根据消息内容中的默认的队列数量在本broker上创建topic,然后进行消息存储。
  3. broker创建topic后并不会马上同步给namesrv,而是每30进行汇报一次,更新namesrv上的topic路由信息,producer会每30s进行拉取一次topic的路由信息,更新完成后就可以正常发送消息,更新之前一直都是按照默认的topic查找路由信息。
5.1.5.2 为什么不能开启自动创建

上述 broker 中流程会有一个问题,就是在producer更新路由信息之前的这段时间,如果消息只发送到了broker-a,则broker-b上不会创建这个topic的路由信息,broker互相之间不通信,当producer更新之后,获取到的broker列表只有broker-a,就永远不会轮询到broker-b的队列(因为没有路由信息),所以生产通常关闭自动创建broker,而是采用手动创建的方式。

5.1.6 发送端规避

注意,有可能在实际的生产过程中,RocketMQ 有几台服务器构成的集群

其中有可能是一个主题 TopicA 中的 4 个队列分散在 Broker1、Broker2、Broker3 服务器上。

RocketMQ高阶使用,中间件篇,rocketmq

如果这个时候 Broker2 挂了,但是生产者不知道(因为生产者客户端每隔 30S 更新一次路由,但是 NamServer 与 Broker 之间的心跳检测间隔是 10S,所以生产者最快也需要 30S 才能感知 Broker2 挂了),所以发送到 queue2 的消息会失败,RocketMQ 发现这次消息发送失败后,就会将 Broker2排除在消息的选择范围,下次再次发送消息时就不会发送到 Broker2,这样做的目的就是为了提高发送消息的成功率。

5.1.6.1 问题梳理

例如在发送之前 sendWhichQueue 该值为 broker-a 的 q1,如果由于此时 broker-a 的突发流量异常大导致消息发送失败,会触发重试,按照轮循机制,下一个选择的队列为 broker-a 的 q2 队列,此次消息发送大概率还是会失败,即尽管会重试 2 次,但都是发送给同一个 Broker 处理,此过程会显得不那么靠谱,即大概率还是会失败,那这样重试的意义将大打折扣。

故 RocketMQ 为了解决该问题,引入了故障规避机制,在消息重试的时候,会尽量规避上一次发送的 Broker,回到上述示例,当消息发往 broker-a q1 队列时返回发送失败,那重试的时候,会先排除 broker-a 中所有队列,即这次会选择 broker-b q1 队列,增大消息发送的成功率。

上述规避思路是默认生效的,即无需干预。

5.1.6.2 规则策略

但 RocketMQ 提供了两种规避策略,该参数由 sendLatencyFaultEnable 控制,用户可干预,表示是否开启延迟规避机制,默认为不开启。(DefaultMQProducer中设置这两个参数)

  • sendLatencyFaultEnable 设置为 false:默认值,不开启,延迟规避策略只在重试时生效,例如在一次消息发送过程中如果遇到消息发送失败,规避 broekr-a,但是在下一次消息发送时,即再次调用 DefaultMQProducer 的 send 方法发送消息时,还是会选择 broker-a 的消息进行发送,只要继续发送失败后,重试时再次规避 broker-a。
  • sendLatencyFaultEnable 设置为 true:开启延迟规避机制,一旦消息发送失败会将 broker-a “悲观”地认为在接下来的一段时间内该 Broker 不可用,在为未来某一段时间内所有的客户端不会向该 Broker 发送消息,这个延迟时间就是通过 notAvailableDuration、latencyMax 共同计算的,就首先先计算本次消息发送失败所耗的时延,然后对应 latencyMax 中哪个区间,即计算在 latencyMax 的下标,然后返回 notAvailableDuration 同一个下标对应的延迟值。
5.1.6.3 注意事项

如果所有的 Broker 都触发了故障规避,并且 Broker 只是那一瞬间压力大,那岂不是明明存在可用的 Broker,但经过你这样规避,反倒是没有 Broker 可用来,那岂不是更糟糕了?针对这个问题,会退化到队列轮循机制,即不考虑故障规避这个因素,按自然顺序进行选择进行兜底。

5.2 消费端保障
5.2.1 注意幂等性

应用程序在使用RocketMQ进行消息消费时必须支持幂等消费,即同一个消息被消费多次和消费一次的结果一样,这一点在使用RoketMQ或者分析RocketMQ源代码之前再怎么强调也不为过。

**“至少一次送达”**的消息交付策略,和消息重复消费是一对共生的因果关系,要做到不丢消息就无法避免消息重复消费,原因很简单,试想一下这样的场景:客户端接收到消息并完成了消费,在消费确认过程中发生了通讯错误,从Broker的角度是无法得知客户端是在接收消息过程中出错还是在消费确认过程中出错,为了确保不丢消息,重发消息是唯一的选择。

有了消息幂等消费约定的基础,RocketMQ就能够有针对性地采取一些性能优化措施,例如:并行消费、消费进度同步机制等,这也是RocketMQ性能优异的原因之一。

5.2.2 消息消费模式

从不同的维度划分,Consumer支持以下消费模式:

  • 广播消费模式下,消息消费失败不会进行重试,消费进度保存在Consumer端;
  • 集群消费模式下,消息消费失败有机会进行重试,消费进度集中保存在Broker端。
5.2.2.1 集群消费

使用相同 Group ID 的订阅者属于同一个集群,同一个集群下的订阅者消费逻辑必须完全一致(包括 Tag 的使用),这些订阅者在逻辑上可以认为是一个消费节点

RocketMQ高阶使用,中间件篇,rocketmq

注意事项

  • 消费端集群化部署, 每条消息只需要被处理一次。
  • 由于消费进度在服务端维护, 可靠性更高。
  • 集群消费模式下,每一条消息都只会被分发到一台机器上处理。如果需要被集群下的每一台机器都处理,请使用广播模式。
  • 集群消费模式下,不保证每一次失败重投的消息路由到同一台机器上,因此处理消息时不应该做任何确定性假设。
5.2.2.2 广播消费

广播消费指的是:一条消息被多个consumer消费,即使这些consumer属于同一个ConsumerGroup,消息也会被ConsumerGroup中的每个Consumer都消费一次,广播消费中ConsumerGroup概念可以认为在消息划分方面无意义。

RocketMQ高阶使用,中间件篇,rocketmq

注意事项

  • 广播消费模式下不支持顺序消息。
  • 广播消费模式下不支持重置消费位点。
  • 每条消息都需要被相同逻辑的多台机器处理。
  • 消费进度在客户端维护,出现重复的概率稍大于集群模式。
  • 广播模式下,消息队列 RocketMQ 保证每条消息至少被每台客户端消费一次,但是并不会对消费失败的消息进行失败重投,因此业务方需要关注消费失败的情况。
  • 广播模式下,客户端每一次重启都会从最新消息消费。客户端在被停止期间发送至服务端的消息将会被自动跳过, 请谨慎选择。
  • 广播模式下,每条消息都会被大量的客户端重复处理,因此推荐尽可能使用集群模式。
  • 目前仅 Java 客户端支持广播模式。
  • 广播模式下服务端不维护消费进度,所以消息队列 RocketMQ 控制台不支持消息堆积查询、消息堆积报警和订阅关系查询功能。
5.2.2.3 集群模式模拟广播

如果业务需要使用广播模式,也可以创建多个 Group ID,用于订阅同一个 Topic。

RocketMQ高阶使用,中间件篇,rocketmq

注意事项

  • 每条消息都需要被多台机器处理,每台机器的逻辑可以相同也可以不一样。
  • 消费进度在服务端维护,可靠性高于广播模式。
  • 对于一个 Group ID 来说,可以部署一个消费端实例,也可以部署多个消费端实例。当部署多个消费端实例时,实例之间又组成了集群模式(共同分担消费消息)。假设 Group ID 1 部署了三个消费者实例 C1、C2、C3,那么这三个实例将共同分担服务器发送给 Group ID 1 的消息。同时,实例之间订阅关系必须保持一致。
5.2.3 消息消费模式

RocketMQ消息消费本质上是基于的拉(pull)模式,consumer主动向消息服务器broker拉取消息。

  • 推消息模式下,消费进度的递增是由RocketMQ内部自动维护的;
  • 拉消息模式下,消费进度的变更需要上层应用自己负责维护,RocketMQ只提供消费进度保存和查询功能。
5.2.3.1 推模式(PUSH)

上面使用的消费者都是PUSH模式,也是最常用的消费模式

由消息中间件(MQ消息服务器代理)主动地将消息推送给消费者;采用Push方式,可以尽可能实时地将消息发送给消费者进行消费。但是,在消费者的处理消息的能力较弱的时候(比如,消费者端的业务系统处理一条消息的流程比较复杂,其中的调用链路比较多导致消费时间比较久。概括起来地说就是**“慢消费问题”**),而MQ不断地向消费者Push消息,消费者端的缓冲区可能会溢出,导致异常。

实现方式,代码上使用 DefaultMQPushConsumer

consumer把轮询过程封装了,并注册MessageListener监听器,取到消息后,唤醒MessageListener的consumeMessage()来消费,对用户而言,感觉消息是被推送(push)过来的。主要用的也是这种方式。

5.2.3.2 拉模式(PULL)

RocketMQ的PUSH模式是由PULL模式来实现的

由消费者客户端主动向消息中间件(MQ消息服务器代理)拉取消息;采用Pull方式,如何设置Pull消息的频率需要重点去考虑,举个例子来说,可能1分钟内连续来了1000条消息,然后2小时内没有新消息产生(概括起来说就是**“消息延迟与忙等待”**)。如果每次Pull的时间间隔比较久,会增加消息的延迟,即消息到达消费者的时间加长,MQ中消息的堆积量变大;若每次Pull的时间间隔较短,但是在一段时间内MQ中并没有任何消息可以消费,那么会产生很多无效的Pull请求的RPC开销,影响MQ整体的网络性能。

5.2.3.3 注意事项

注意:RocketMQ 4.6.0版本后将弃用DefaultMQPullConsumer

DefaultMQPullConsumer方式需要手动管理偏移量,官方已经被废弃,将在2022年进行删除

RocketMQ高阶使用,中间件篇,rocketmq

DefaultLitePullConsumer

该类是官方推荐使用的手动拉取的实现类,偏移量提交由RocketMQ管理,不需要手动管理

5.2.4 消息确认机制

consumer的每个实例是靠队列分配来决定如何消费消息的,那么消费进度具体是如何管理的,又是如何保证消息成功消费的?(RocketMQ有保证消息肯定消费成功的特性,失败则重试)

为了保证数据不被丢失,RocketMQ支持消息确认机制,即ack。发送者为了保证消息肯定消费成功,只有使用方明确表示消费成功,RocketMQ才会认为消息消费成功。中途断电,抛出异常等都不会认为成功——即都会重新投递。

5.2.4.1 确认消费

业务实现消费回调的时候,当且仅当此回调函数返回ConsumeConcurrentlyStatus.CONSUME_SUCCESS,RocketMQ才会认为这批消息(默认是1条)是消费完成的。

consumer.registerMessageListener(new MessageListenerConcurrently() {
    @Override
    public ConsumeConcurrentlyStatus consumeMessage(List<MessageExt> msgs, ConsumeConcurrentlyContext context) {
        System.out.println(Thread.currentThread().getName() + " Receive New Messages: " + msgs);
        execute();//执行真正消费
        return ConsumeConcurrentlyStatus.CONSUME_SUCCESS;
    }
})
5.2.4.2 消费异常

如果这时候消息消费失败,例如数据库异常,余额不足扣款失败等一切业务认为消息需要重试的场景,只要返回ConsumeConcurrentlyStatus.RECONSUME_LATER,RocketMQ就会认为这批消息消费失败了。

consumer.registerMessageListener(new MessageListenerConcurrently() {
    @Override
    public ConsumeConcurrentlyStatus consumeMessage(List<MessageExt> msgs, ConsumeConcurrentlyContext context) {
        System.out.println(Thread.currentThread().getName() + " Receive New Messages: " + msgs);
        execute();//执行真正消费
        return ConsumeConcurrentlyStatus.RECONSUME_LATER
    }
})

为了保证消息是肯定被至少消费成功一次,RocketMQ会把这批消息重发回Broker(topic不是原topic而是这个消费组的RETRY topic),在延迟的某个时间点(默认是10秒,业务可设置)后,再次投递到这个ConsumerGroup,而如果一直这样重复消费都持续失败到一定次数(默认16次),就会投递到DLQ死信队列,应用可以监控死信队列来做人工干预。

5.2.5 消息重试机制
5.2.5.1 顺序消息的重试

对于顺序消息,当消费者消费消息失败后,消息队列RocketMQ版会自动不断地进行消息重试(每次间隔时间为1秒),这时,应用会出现消息消费被阻塞的情况,因此,建议您使用顺序消息时,务必保证应用能够及时监控并处理消费失败的情况,避免阻塞现象的发生。

5.2.5.2 无序消息的重试

无序消息的重试只针对集群消费方式生效;广播方式不提供失败重试特性,即消费失败后,失败消息不再重试,继续消费新的消息。

5.2.5.3 重试次数

消息队列RocketMQ版默认允许每条消息最多重试16次,每次重试的间隔时间如下。

第几次重试 与上次重试的间隔时间 第几次重试 与上次重试的间隔时间
1 10秒 9 7分钟
2 30秒 10 8分钟
3 1分钟 11 9分钟
4 2分钟 12 10分钟
5 3分钟 13 20分钟
6 4分钟 14 30分钟
7 5分钟 15 1小时
8 6分钟 16 2小时

如果消息重试16次后仍然失败,消息将不再投递。如果严格按照上述重试时间间隔计算,某条消息在一直消费失败的前提下,将会在接下来的4小时46分钟之内进行16次重试,超过这个时间范围消息将不再重试投递。

5.2.5.4 和生产端重试区别

消费者和生产者的重试还是有区别的,主要有两点

  • 默认重试次数:Product默认是2次,而Consumer默认是16次
  • 重试时间间隔:Product是立刻重试,而Consumer是有一定时间间隔的。它照1S,5S,10S,30S,1M,2M····2H进行重试。

注意:Product在异步情况重试失效,而对于Consumer在广播情况下重试失效。

5.2.5.5 重试配置方式

需要重试

消费失败后,重试配置方式,集群消费方式下,消息消费失败后期望消息重试,需要在消息监听器接口的实现中明确进行配置(三种方式任选一种):

  • 方式1:返回RECONSUME_LATER(推荐)
  • 方式2:返回Null
  • 方式3:抛出异常

无需重试

集群消费方式下,消息失败后期望消息不重试,需要捕获消费逻辑中可能抛出的异常,最终返回Action.CommitMessage,此后这条消息将不会再重试。

//注册消息监听器
consumer.registerMessageListener(new MessageListenerConcurrently() {
    public ConsumeConcurrentlyStatus consumeMessage(List<MessageExt> list, ConsumeConcurrentlyContext context) {
        //消息处理逻辑抛出异常,消息将重试。
        try {
            doConsumeMessage(list);
        }catch (Exception e){
            //捕获消费逻辑中的所有异常,并返回Action.CommitMessage;
            return ConsumeConcurrentlyStatus.CONSUME_SUCCESS;
        }
        //业务方正常消费
        return ConsumeConcurrentlyStatus.CONSUME_SUCCESS;
    }
});
5.3 死信队列

在正常情况下无法被消费(超过最大重试次数)的消息称为死信消息(Dead-Letter Message),存储死信消息的特殊队列就称为死信队列(Dead-Letter Queue)

当一条消息初次消费失败,消息队列 RocketMQ 会自动进行消息重试;达到最大重试次 数后,若消费依然失败,则表明消费者在正常情况下无法正确地消费该消息,此时,消息队列 RocketMQ 不会立刻将消息丢弃,而是将其发送到该消费者对应的特殊队列中。 在消息队列 RocketMQ 中,这种正常情况下无法被消费的消息称为死信消息(Dead-Letter Message),存储死信消息的特殊队列称为死信队列(Dead-Letter Queue)。

5.3.1 死信特性
5.3.1.1 死信消息特性
  • 不会再被消费者正常消费
  • 有效期与正常消息相同,均为 3 天,3 天后会被自动删除,故死信消息应在产生的 3 天内及时处理
5.3.1.2 死信队列特性
  • 一个死信队列对应一个消费者组,而不是对应单个消费者实例
  • 一个死信队列包含了对应的 Group ID 所产生的所有死信消息,不论该消息属于哪个 Topic
  • 若一个 Group ID 没有产生过死信消息,则 RocketMQ 不会为其创建相应的死信队列
5.3 延迟队列

指消息发送到某个队列后,在指定多长时间之后才能被消费
broker有配置项messageDelayLevel,默认值为“1s 5s 10s 30s 1m 2m 3m 4m 5m 6m 7m 8m 9m 10m 20m 30m 1h 2h”,18个level

发送消息时设置延迟文章来源地址https://www.toymoban.com/news/detail-570682.html

msg.setDelayLevel(level)

到了这里,关于RocketMQ高阶使用的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 消息队列中间件 MetaQ/RocketMQ

    推荐电子书:云原生架构白皮书 2022版-藏经阁-阿里云开发者社区 (aliyun.com) 简介—— 消息队列中间件 MetaQ/RocketMQ 中间件 MetaQ 是一种基于队列模型的消息中间件,MetaQ 据说最早是受 Kafka 的影响开发的,第一版的名字 \\\"metamorphosis\\\",是奥地利作家卡夫卡的名作——《变形记》。

    2024年02月14日
    浏览(51)
  • 中间件上云部署 rocketmq

    Apache RocketMQ是一个分布式消息传递和流媒体平台,具有低延迟、高性能和可靠性、万亿级别的容量和灵活的可伸缩性。 发布/订阅消息传递模型 定期消息传递 按时间或偏移量进行消息回溯 日志中心流 大数据集成 在同一队列中可靠的FIFO和严格的有序消息传递 有效的拉伸消费

    2024年02月16日
    浏览(43)
  • 消息中间件之RocketMQ源码分析(十)

    启动命令 nohup ./bin/mqnamesrv -c ./conf/namesrv.conf dev/null 21 通过脚本配置启动基本参数,比如配置文件路径、JVM参数,调用NamesrvStartup.main()方法,解析命令行的参数,将处理好的参数转化为Java实例,传递给NamesrvController实例 加载命令行传递的配置参数,调用controller.initialize()方法初

    2024年02月20日
    浏览(53)
  • 分布式消息中间件RocketMQ的应用

    所有代码同步至GitCode:https://gitcode.net/ruozhuliufeng/test-rocketmq.git 普通消息 消息发送分类 ​ Producer对于消息的发送方式也有多种选择,不同的方式会产生不同的系统效果。 同步发送消息 ​ 同步发送消息是指,Producer发出一条消息后,会在收到MQ返回的ACK之后才发下一条消息。

    2024年02月05日
    浏览(82)
  • Kafka、RabbitMQ、RocketMQ中间件的对比

    消息中间件现在有不少,网上很多文章都对其做过对比,在这我对其做进一步总结与整理。     RocketMQ 淘宝内部的交易系统使用了淘宝自主研发的Notify消息中间件,使用Mysql作为消息存储媒介,可完全水平扩容,为了进一步降低成本,我们认为存储部分可以进一步优化,201

    2024年02月05日
    浏览(36)
  • 【Alibaba中间件技术系列】「RocketMQ技术专题」小白专区之领略一下RocketMQ基础之最!

    应一些小伙伴们的私信,希望可以介绍一下RocketMQ的基础,那么我们现在就从0开始,进入RocketMQ的基础学习及概念介绍,为学习和使用RocketMQ打好基础! RocketMQ是一款快速地、可靠地、分布式、容易使用的消息中间件,由Alibaba开发,其前身是 Metaq,Metaq 可以看成是linkedin的Ka

    2024年02月12日
    浏览(47)
  • 【消息中间件】RocketMQ消息重复消费场景及解决办法

    消息重复消费是各个MQ都会发生的常见问题之一,在一些比较敏感的场景下,重复消费会造成比较严重的后果,比如重复扣款等。 当系统的调用链路比较长的时候,比如系统A调用系统B,系统B再把消息发送到RocketMQ中,在系统A调用系统B的时候,如果系统B处理成功,但是迟迟

    2024年02月05日
    浏览(44)
  • 【消息中间件】详解三大MQ:RabbitMQ、RocketMQ、Kafka

    作者简介 前言 博主之前写过一个完整的MQ系列,包含RabbitMQ、RocketMQ、Kafka,从安装使用到底层机制、原理。专栏地址: https://blog.csdn.net/joker_zjn/category_12142400.html?spm=1001.2014.3001.5482 本文是该系列的清单综述,会拉通来聊一下三大MQ的特点和各种适合的场景。 目录 1.概述 1.1.M

    2024年02月09日
    浏览(50)
  • ActiveMQ、RabbitMQ、Kafka、RocketMQ消息中间件技术选型

    消息中间件是分布式系统中重要的组件之一,用于实现异步通信、解耦系统、提高系统可靠性和扩展性。在做消息中间件技术选型时,需要考虑多个因素,包括可靠性、性能、可扩展性、功能丰富性、社区支持和成本等。本文将五种流行的消息中间件技术:ActiveMQ、RabbitMQ、

    2024年02月11日
    浏览(47)
  • 【Alibaba中间件技术系列】「RocketMQ技术专题」RocketMQ消息发送的全部流程和落盘原理分析

    RocketMQ目前在国内应该是比较流行的MQ 了,目前本人也在公司的项目中进行使用和研究,借着这个机会,分析一下RocketMQ 发送一条消息到存储一条消息的过程,这样会对以后大家分析和研究RocketMQ相关的问题有一定的帮助。 分析的总体技术范围发送到存储,本文的主要目的是

    2024年02月10日
    浏览(43)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包