方案:使用openCV中的直方图算法做对比。测试效果较好。
步骤(在java中使用openCV):
1.引入openCV的依赖
<!-- https://mvnrepository.com/artifact/org.openimaj/core -->
<dependency>
<groupId>org.openpnp</groupId>
<artifactId>opencv</artifactId>
<version>4.5.5-1</version>
</dependency>
2.代码
代码中提供了均方差算法(MSE)、结构相似性指数算法(SSIM)、峰值信噪比(PSNR)、直方图算法。其中直方图效果最好
package com.angus.temp;
import org.opencv.core.*;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
import java.util.ArrayList;
import java.util.List;
/**
* @author angus
* @version 1.0.0
* @Description
* @createTime 2023年06月01日 19:15:00
*/
public class OpenCVImageSimilarity {
public static void main(String[] args) {
// 加载OpenCV库
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
// 读取两张图像。准备比对的图片
Mat image1 = Imgcodecs.imread("C:\\Users\\Pictures\\0009.jpg");
Mat image2 = Imgcodecs.imread("C:\\Users\\Pictures\\0011.jpg");
// 将图片处理成一样大
Imgproc.resize(image1, image1, image2.size());
Imgproc.resize(image2, image2, image1.size());
// 计算均方差(MSE)
double mse = calculateMSE(image1, image2);
System.out.println("均方差(MSE): " + mse);
// 计算结构相似性指数(SSIM)
double ssim = calculateSSIM(image1, image2);
System.out.println("结构相似性指数(SSIM): " + ssim);
// 计算峰值信噪比(PSNR)
double psnr = calculatePSNR(image1, image2);
System.out.println("峰值信噪比(PSNR): " + psnr);
// 计算直方图
final double similarity = calculateHistogram(image1, image2);
System.out.println("图片相似度(直方图): " + similarity);
// 计算归一化交叉相关(NCC)
// double ncc = calculateNCC(image1, image2);
// System.out.println("归一化交叉相关(NCC): " + ncc);
}
// 计算均方差(MSE)
private static double calculateHistogram(Mat image1, Mat image2) {
// 计算直方图
Mat hist1 = calculateHistogram(image1);
Mat hist2 = calculateHistogram(image2);
// 计算相似度
final double similarity = Imgproc.compareHist(hist1, hist2, Imgproc.CV_COMP_CORREL);
return similarity;
}
// 计算均方差(MSE)
private static double calculateMSE(Mat image1, Mat image2) {
Mat diff = new Mat();
Core.absdiff(image1, image2, diff);
Mat squaredDiff = new Mat();
Core.multiply(diff, diff, squaredDiff);
Scalar mseScalar = Core.mean(squaredDiff);
return mseScalar.val[0];
}
// 计算结构相似性指数(SSIM)
private static double calculateSSIM(Mat image1, Mat image2) {
Mat image1Gray = new Mat();
Mat image2Gray = new Mat();
Imgproc.cvtColor(image1, image1Gray, Imgproc.COLOR_BGR2GRAY);
Imgproc.cvtColor(image2, image2Gray, Imgproc.COLOR_BGR2GRAY);
MatOfFloat ssimMat = new MatOfFloat();
Imgproc.matchTemplate(image1Gray, image2Gray, ssimMat, Imgproc.CV_COMP_CORREL);
Scalar ssimScalar = Core.mean(ssimMat);
return ssimScalar.val[0];
}
// 计算峰值信噪比(PSNR)
private static double calculatePSNR(Mat image1, Mat image2) {
Mat diff = new Mat();
Core.absdiff(image1, image2, diff);
Mat squaredDiff = new Mat();
Core.multiply(diff, diff, squaredDiff);
Scalar mseScalar = Core.mean(squaredDiff);
double mse = mseScalar.val[0];
double psnr = 10.0 * Math.log10(255.0 * 255.0 / mse);
return psnr;
}
// 计算归一化交叉相关(NCC)
// private static double calculateNCC(Mat image1, Mat image2) {
// Mat image1Gray = new Mat();
// Mat image2Gray = new Mat();
// Imgproc.cvtColor(image1, image1Gray, Imgproc.COLOR_BGR2GRAY);
// Imgproc.cvtColor(image2, image2Gray, Imgproc.COLOR_BGR2GRAY);
// MatOfInt histSize = new MatOfInt(256);
// MatOfFloat ranges = new MatOfFloat(0, 256);
// Mat hist1 = new Mat();
// Mat hist2 = new Mat();
//
// Core.normalize(hist1, hist1, 0, 1, Core.NORM_MINMAX);
// Core.normalize(hist2, hist2, 0, 1, Core.NORM_MINMAX);
// double ncc = Core.compareHist(hist1, hist2, Imgproc.CV_COMP_CORREL);
// return ncc;
// }
private static Mat calculateHistogram(Mat image) {
Mat hist = new Mat();
// 设置直方图参数
MatOfInt histSize = new MatOfInt(256);
MatOfFloat ranges = new MatOfFloat(0, 256);
MatOfInt channels = new MatOfInt(0);
List<Mat> images = new ArrayList<>();
images.add(image);
// 计算直方图
Imgproc.calcHist(images, channels, new Mat(), hist, histSize, ranges);
return hist;
}
}
3.会遇到一个问题
Exception in thread "main" java.lang.UnsatisfiedLinkError: no opencv_java455 in java.library.path
Exception in thread "main" java.lang.UnsatisfiedLinkError: no opencv_java455 in java.library.path: [C:\Program Files\Java\jdk-14.0.2\bin, C:\Windows\Sun\Java\bin, C:\Windows\system32, C:\Windows, C:\Windows\system32, C:\Windows, C:\Windows\System32\Wbem, C:\Windows\System32\WindowsPowerShell\v1.0\, C:\Windows\System32\OpenSSH\, D:\angus\soft\Xshell 7\, D:\angus\soft\Xftp 7\, C:\Program Files\Git\cmd, C:\Program Files\Java\jdk-14.0.2\bin, C:\Users\angus\AppData\Local\Microsoft\WindowsApps, ., D:\angus\soft\Microsoft VS Code\bin, .]
at java.base/java.lang.ClassLoader.loadLibrary(ClassLoader.java:2680)
at java.base/java.lang.Runtime.loadLibrary0(Runtime.java:807)
at java.base/java.lang.System.loadLibrary(System.java:1907)
at com.angus.easyes.temp.OpenCVImageSimilarity.main(OpenCVImageSimilarity.java:17)
4.解决方法
Exception in thread “main“ java.lang.UnsatisfiedLinkError: no opencv_java455 in java.library.path:_水的精神的博客-CSDN博客
5.运行效果
6.相似性效果对比文章来源:https://www.toymoban.com/news/detail-571834.html
https://blog.csdn.net/star1210644725/article/details/131005052?csdn_share_tail=%7B%22type%22%3A%22blog%22%2C%22rType%22%3A%22article%22%2C%22rId%22%3A%22131005052%22%2C%22source%22%3A%22star1210644725%22%7Dhttps://blog.csdn.net/star1210644725/article/details/131005052?csdn_share_tail=%7B%22type%22%3A%22blog%22%2C%22rType%22%3A%22article%22%2C%22rId%22%3A%22131005052%22%2C%22source%22%3A%22star1210644725%22%7D文章来源地址https://www.toymoban.com/news/detail-571834.html
到了这里,关于使用openCV比对任意两张图片的相似度(亲测较准确)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!