【数学建模+数据处理类】2021数学建模国赛B题 乙醇偶合制备C4烯烃

这篇具有很好参考价值的文章主要介绍了【数学建模+数据处理类】2021数学建模国赛B题 乙醇偶合制备C4烯烃。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

问题一

对附件1中每种催化剂组合,分别研究乙醇转化率、C4烯烃的选择性与温度的关系,并对附件2中350度时给定的催化剂组合在一次实验不同时间的测试结果进行分析。


step1:对实验数据进行探索性分析

  1. 数据的预处理(A11的缺失)
  2. 可视化、数据关系展示
    包括画出各个因变量(不同催化剂作用下乙醇转化率、C4烯烃选择性、收率)与温度的散点图等,例如对于A5
    【数学建模+数据处理类】2021数学建模国赛B题 乙醇偶合制备C4烯烃,数学建模,matlab,matlab,数学建模,线性回归,算法

step2:对不同催化剂作用下乙醇转化率、C4烯烃的选择性与温度进行相关分析,说明其显著性

变量 描述含义
Y1 乙醇转化率
Y2 C4烯烃选择性
X1 Co负载量
X2 Co/Sio2和HA P的装料比
X3 乙醇浓度
X4 温度

由于因变量的数值都是百分数为单位所以为其做相应的Logit变换:
y = l o g [ y % / ( 1 − y % ) ] y=log[y\%/(1-y\%)] y=log[y%/(1y%)]

x4=[250.00 275.00 300.00 325.00 350.00 ];
y1=[-0.760619463 -0.848123231 -0.580435779 -0.402686952 -0.234653057];
corrcoef(x4,y1)

求得x4与y1(变换后)的相关系数为0.939,得到结论两者相关系显著。


各个因变量与温度间的关联分析,非线性影响、显著性检验等。
灰色关联度结果,例如:

【数学建模+数据处理类】2021数学建模国赛B题 乙醇偶合制备C4烯烃,数学建模,matlab,matlab,数学建模,线性回归,算法
step3:尝试多种拟合模型,选择较优的拟合函数,并得到乙醇转化率、C4烯烃的选择性与温度的函数关系
观察并确定所要拟合的模型曲线形式,优化计算出模型拟合值。如:线性、二次、指数、logit变换线性,参数估计等。
经比较计算logit变换一次或二次模型是较好的选择,参数少而显著,平均 R 2 R^2 R2较高。
根据以上研究可以认为,乙醇转化率C4烯烃选择性与温度具有二次相关,且为正相关。

step4:对给定催化剂在温度350摄氏度的情况下进行稳定性分析。即随着时间变化,乙醇转化率、C4烯烃选择性、收率变化规律的稳定性分析。

可用方差分析、logit变换或均值模型残差的方差是否减少。结果趋于稳定。

如果用某类函数(比如参数超过3个多项式等)直接拟合得到的关系,且没有进行误差分析,则是不好的做法。

问题二

探讨不同催化剂组合及温度对乙醇转化率以及C4烯烃选择性大小的影响。


step1:不同乙醇浓度、Co的负载量、装料比和温度对乙醇转化率、C4烯烃选择性的大小影响程度。

百分数(转化率、选择性)数据直接用线性模型难以描述,通常进行logit等变换,再建立回归模型来进行比较(方差分析),确定重要因素。
【数学建模+数据处理类】2021数学建模国赛B题 乙醇偶合制备C4烯烃,数学建模,matlab,matlab,数学建模,线性回归,算法

step2:全因素方差分析(方差分析表,F-检验,显著水平0.05)
表明:温度>乙醇浓度
这两个因素同时对Y1和Y2产生显著影响。

step3:对自变量进行主成分回归分析
各反应物、催化剂、反应条件之间可能存在着共线性关系,方差扩大因子数过大,故将存在共线性关系的自变量进行主成分回归分析,得出聚合后自变量因子进行多元线性回归。
step4:进行多元逐步回归分析
由于直接利用上述指标探究对乙醇转化率和C4烯烃选择性进行分析会造成信息重叠,形成偏差,所以采用多元线性回归进行分析。
step5:求解回归系数及分析
step6:误差分析
得知温度变量在解释两个乙醇转化率、C4烯烃回归方程中起到了极为重要的作用。

问题三

如何选择催化剂组合与温度,使得在相同实验条件下C4烯烃收率尽可能
高。若使温度低于350度,又如何选择催化剂组合与温度,使得C4烯烃收率尽可能高。


step1:建立烯烃收率的基础模型
目标函数确定: m a x = y 1 ∗ y 2 max=y_1*y_2 max=y1y2,其中y1为乙醇转化率,y2为C4烯烃选择性
约束条件确定: ∑ i = 1 5 y i = 100 \sum_{i=1}^{5}y_{i}=100 i=15yi=100该式为所有生成物选择性之和等于百分之百
X l i ≤ x i ≤ X l r i = 1 , 2 , . . . , 5 Xl_i\le x_i\le Xl_ri=1,2,...,5 XlixiXlri=1,2,...,5该式为所有自变量满足已有实验设计的取值范围。根据问题二中对附件一进行的数据拆分,分析得到每一种自变量的实际取之范围。
step2:基于多元线性回归的模型优化
由于对于建立的烯烃收率的基础模型和题目给出的条件及数据,无法获得准确的约束条件对基础数学模型进行求解,经过测试无法直接利用上述的最优化模型进行求解。因此提出基于多元线性回归的C4烯烃最大收率模型。由于乙醇转化率和C3烯烃选择性两者的函数表达式来自于通过物种因变量的多元回归拟合,因此可以将y1,y2拆分得到多个自变量对C4烯烃收率进行多元回归分析,将拟合成的多元回归模型作为新一轮的目标函数,从而对原有模型进行有效改进。
step3:基于方差分析的C4烯烃收率模型优化
对于C4烯烃收率来说,受到了乙醇转化率与C4烯烃转化率的系数的直接限制,因此引入方差分析,来看两个变量之间是否含有相互作用关系,从而来对C4烯烃的单目标模型进行优化。

问题四

如果允许再增加5次实验,应如何设计,并给出详细理由。


该问题使用了均匀试验设计方法
相较于正交设计,均匀试验设计适用于水平多,因素少的数据,并且均匀试验设计由于只考虑试验点在试验范围内的均匀散布,减少了进行试验次数,且更加合适在较少的试验中获得更多信息。

灵敏度分析

由问题二克制,温度等自变量对因变量的变化有强烈影响,因此通过对C4烯烃收率的回归方程中的温度系数进行灵敏度分析,使其值经过上下百分之5的数据波动。文章来源地址https://www.toymoban.com/news/detail-572117.html

到了这里,关于【数学建模+数据处理类】2021数学建模国赛B题 乙醇偶合制备C4烯烃的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【数学建模】数据预处理

    数学建模是将实际问题转化为数学模型来解决的过程,而数据预处理是数学建模中非常重要的一步。以下是为什么要进行数据预处理的几个原因: 数据质量:原始数据往往存在噪声、异常值、缺失值等问题,这些问题会对建模结果产生负面影响。通过数据预处理,可以去除噪

    2024年02月09日
    浏览(39)
  • 数学建模--数据预处理

    目录 一、数据统计 1、行列式的最大元素和最小元素 2、求向量的平均值和中值  3、对矩阵做排序  二、数据优化(数据残缺值和异常值的处理) 1、数据残缺 ①插值 ②拟合  ③邻近替换 ④KNN算法填充 2、数据异常 ①拉依达准则 ②替换异常值 3、数据变换 ①0-1标准化 ②z-

    2024年02月01日
    浏览(42)
  • 数学建模——数据预处理

    在数学建模时,经常遇到数据的预处理,那么会有一些什么情况呢,跟着北海老师总结了他的内容~希望对大家有所帮助! 缺失值 比赛提供的数据,发现有些单元格是null或空的 缺失太多:例如调查人口信息,发现“年龄”这一项缺失了40%,就直接把该项指标删除 最简单处理

    2024年02月01日
    浏览(32)
  • 数学建模:数据的预处理

    🔆 文章首发于我的个人博客:欢迎大佬们来逛逛 常见的数据变换的方式:通过某些简单的函数进行数据变换。 x ′ = x 2 x ′ = x x ′ = log ⁡ ( x ) ∇ f ( x k ) = f ( x k + 1 ) − f ( x k ) begin{aligned}x^{prime}=x^2 \\\\begin{aligned}x^{prime}=sqrt{x}end{aligned} \\\\x\\\'=log(x) \\\\nabla fleft(x_{k})right.=f

    2024年02月11日
    浏览(38)
  • 【数学建模】数据处理与可视化

    两类基本对象 ndarray(N-dimensional Array Object):存储单一数据类型的多维数组 ufunc(Universal Funciton Object):对数组进行处理的通用函数 数组创建 向array函数传入列表/元组 利用arange、linspace、empty等函数生成数组 数组属性 数组元素索引 array数组和list列表的区别:list中的元素可以不

    2024年01月18日
    浏览(42)
  • 数据预处理方法整理(数学建模)

    这篇文章主要是整理了一些作者在各种建模比赛中遇到的数据预处理问题以及方法,主要针对excel或csv格式的数据,为后续进行机器学习或深度学习做前期准备 导入库和文件,这里使用的是绝对路径,可改为相对路径 传入的为csv格式的文件,如果是xlsx格式的文件,建议先使

    2024年02月14日
    浏览(53)
  • 数学建模Matlab之数据预处理方法

    本文综合代码来自文章 作者通常首先判断是否具有异常值,因为如果有异常值的话,咱们就会剔除异常值,使其变成缺失值,然后再做缺失值处理会好很多。 对于上面的异常值检验法做讲解与扩展: 1. Mean 三倍标准差法(3σ原则) 描述 :在正态分布数据中,任何一个数值如

    2024年02月08日
    浏览(45)
  • matlab数据的获取、预处理、统计、可视化、降维 | 《matlab数学建模方法与实践(第三版)》学习笔记

    一、数据的获取 1.1 从Excel中获取 使用readtable() 使用xlsread()——xlswrite() 1.2  从TXT中获取 使用load() 使用textread() 使用fopen() fread() fclose()  使用fprintf()写入信息到txt  1.3 从图片中获取 使用imread  1.4 从视频获取  使用视觉工具箱中的VideoFileReader  二、数据的预处理 2.1 缺失值处

    2024年01月19日
    浏览(64)
  • 2023国赛数学建模E题思路代码 - 黄河水沙监测数据分析

    # 1 赛题 E 题 黄河水沙监测数据分析 黄河是中华民族的母亲河。研究黄河水沙通量的变化规律对沿黄流域的环境治理、气候变 化和人民生活的影响, 以及对优化黄河流域水资源分配、协调人地关系、调水调沙、防洪减灾 等方面都具有重要的理论指导意义。 附件 1 给出了位于

    2024年02月08日
    浏览(47)
  • 2023国赛数学建模E题思路代码 黄河水沙监测数据分析

    E题最大的难度是数据处理,可以做一个假设,假设一定时间内流量跟含沙量不变,那么我们可以对数据进行向下填充,把所有的数据进行合并之后可以对其进行展开特性分析,在研究调水调沙的实际效果时,可以先通过分析水沙通量计算实际效果,然后分析水沙通量与河底高

    2024年02月09日
    浏览(44)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包