权重分析——熵权法

这篇具有很好参考价值的文章主要介绍了权重分析——熵权法。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1、作用

权重分析是通过熵权法对问卷调查的指标的重要性进行权重输出,根据信息熵的定义,对于某项指标,可以用熵值来判断某个指标的离散程度,其信息熵值越小,指标的离散程度越大, 该指标对综合评价的影响(即权重)就越大,如果某项指标的值全部相等,则该指标在综合评价中不起作用。因此,可利用信息熵这个工具,计算出各个指标的权重,为多指标综合评价提供依据。

2、输入输出描述

输入:至少两项或以上的定量变量(正向指标与负向指标),一般要求数据为量表量数据
输出:输入定量变量对应的权重值

3、案例示例

比如对拥有的6个科室的8项考核指标进行权重分析,得到各个考核指标的权重占比。

权重分析,数学建模,人工智能,机器学习,数学建模,熵权法

4、建模步骤

熵是信息论中的概念,是对不确定性的一种度量。信息量越大,不确定性越小,熵就越小;信息量越小,不确定性越大,熵也越大。根据信息熵的定义,对于某项指标可用熵值来判断某个指标的离散 程度,其熵值越小,指标的离散程度越大,该指标对综合评价的影响(即权重)也越大。
1.对各个元素按照每个选项的数量进行归一化处理为:
对于正向指标:

权重分析,数学建模,人工智能,机器学习,数学建模,熵权法


对于负向指标:

权重分析,数学建模,人工智能,机器学习,数学建模,熵权法

第 i 个元素素的第 j 个选项的比例 yij 为:

权重分析,数学建模,人工智能,机器学习,数学建模,熵权法

上式中:m 为考虑的元素的个数。

2.第j个选项的信息熵为:

权重分析,数学建模,人工智能,机器学习,数学建模,熵权法

其中K=1/,K为常数。

第j个选项的信息熵冗余度为:。
3.各项指标权值为:

权重分析,数学建模,人工智能,机器学习,数学建模,熵权法文章来源地址https://www.toymoban.com/news/detail-572395.html

到了这里,关于权重分析——熵权法的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 数学建模之熵权法(EWM)matlab实例实现

    本文参考http://blog.sina.com.cn/s/blog_710e9b550101aqnv.html 熵权法是一种客观赋值的方法,即它通过数据所包含的信息量来确定权重,形象的说如果每个人考试都能考100分,那么这个指标对于这些人的评价是毫无意义的,因为没有任何区分度,熵权法就是通过区分度来确定对于特征的

    2023年04月08日
    浏览(41)
  • 权重分析——熵权法

    权重分析是通过熵权法对问卷调查的指标的重要性进行权重输出,根据信息熵的定义,对于某项指标,可以用熵值来判断某个指标的离散程度,其信息熵值越小,指标的离散程度越大, 该指标对综合评价的影响(即权重)就越大,如果某项指标的值全部相等,则该指标在综合

    2024年02月16日
    浏览(43)
  • 熵权法计算权重

    基于信息论的熵值法是根据各指标所含信息有序程度的差异性来确定指标权重的客观赋权方法,仅依赖于数据本身的离散程度。 熵用于度量不确定性,指标的离散程度越大(不确定性越大)则熵值越大,表明指标值提供的信息量越多,则该指标的权重也应越大。 熵权法多用

    2024年02月04日
    浏览(47)
  • 【不带权重的TOPSIS模型详解】——数学建模

    部分资料取自于b站:数学建模学习交流清风老师 TOPSIS法可翻译为 逼近理想解排序法 ,国内常简称为 优劣解距离法 它是一种常用的综合评价方法,其能充分利用原始数据的信息,其结果能精确地反映各评价方案之间地差异。 举个例子: 数学成绩越高代表学习能力越强。跑

    2024年02月12日
    浏览(44)
  • 建模笔记——熵权法(Python实现)

    熵权法是一种通过对已知数据的处理,从而获得影响因子权重的方法,其基本思路是根据指标变异性的大小来确定客观权重。 熵权法的优点在于其根据各项指标指标值的变异程度来确定指标权数的,是一种客观赋权法,避免了人为因素带来的偏差。相对那些主观赋值法,精度较

    2024年02月16日
    浏览(42)
  • 【建模算法】熵权法(Python实现)

    熵权法是通过寻找数据本身的规律来赋权重的一种方法。 熵是热力学单位,在数学中,信息熵表示事件所包含的信息量的期望。根据定义,对于某项指标,可以用熵值来判断某个指标的离散程度,其熵值越小,指标的离散程度越大,该指标对综合评价的影响(权重)越大。

    2024年02月04日
    浏览(39)
  • 12.9建模复盘——EXCEL批量处理数据、查找数据、熵权法、可视化

    以下是一些可以查询英国国家数据的网站: 1. 英国政府网站(www.gov.uk):提供各个政府部门的数据和统计信息,包括经济、人口、教育、健康、环境等领域。 2. 英国国家统计局(www.ons.gov.uk):英国的官方统计机构,提供广泛的统计数据和报告,涵盖经济、劳动力、人口、

    2024年02月05日
    浏览(45)
  • 基于熵权法的topsis分析(包含matlab源码以及实例)

                 目录 一、算法简述          1.topsis分析法          2.熵权法          3.两种算法的结合 二、算法步骤          1.判断指标类型          2.数据正向化          3.正向化矩阵标准化          4.计算概率矩阵P          5.计算各个指标的信息熵

    2024年01月16日
    浏览(38)
  • 【数学建模】历年全国大学生数学建模竞赛题目+定位分析

    数学建模 https://so.csdn.net/so/search?q=%E6%95%B0%E5%AD%A6%E5%BB%BA%E6%A8%A1spm=1001.2101.3001.7020 国赛创办于1992年,每年一届,是首批列入“高校学科竞赛排行榜”的19项竞赛之一。2020年,来自全国及美国、英国、马来西亚的1470所院校/校区、45680队(本科41826队、专科3854队)、13万多人报名参赛

    2024年02月06日
    浏览(83)
  • 【数学建模】《实战数学建模:例题与讲解》第十二讲-因子分析、判别分析(含Matlab代码)

    本系列侧重于例题实战与讲解,希望能够在例题中理解相应技巧。文章开头相关基础知识只是进行简单回顾,读者可以搭配课本或其他博客了解相应章节,然后进入本文正文例题实战,效果更佳。 如果这篇文章对你有帮助,欢迎点赞与收藏~ 判别分析是一种统计方法,它根据

    2024年02月04日
    浏览(69)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包