离散数据与连续数据

这篇具有很好参考价值的文章主要介绍了离散数据与连续数据。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

离散数据

离散数据是指其数值只能用自然数或整数单位计算的数据。例如:企业个数、职工人数、设备台数等,只能按计量单位数计数。这种数据的数值一般用计数方法取得。在统计学中,数据按变量值是否连续可分为连续数据与离散数据两种。

连续数据

在一定区间内可以任意取值的数据叫连续数据,其数值是连续不断的,相邻两个数值可作无限分割,即可取无限个数值。例如,生产零件的规格尺寸和人体测量的身高和体重和胸围等为连续数据,其数值只能用测量或计量的方法获得。

离散变量与连续变量

符号x如果能够表示对象集合S中的任意元素,就是变量。如果变量的域(即对象的集合S)是离散的,该变量就是离散变量;如果它的域是连续的,它就是连续变量。

单项式分组

对离散变量,如果变量值的变动幅度小,就可以一个变量值对应一组,称单项式分组。例如,如果学生的成绩以五分制计算,则全体学生的成绩可以分为六组,即5、4、3、2、1、0。

组距式分组

离散变量如果变量值的变动幅度很大,变量值的个数很多,则把整个变量值依次划分为几个区间,各个变量值则按其大小确定所归并的区间,区间的距离称为组距,这样的分组称为组距式分组。文章来源地址https://www.toymoban.com/news/detail-572396.html

到了这里,关于离散数据与连续数据的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【概率论与数理统计】猴博士 笔记 p21-23 二维连续型求边缘分布函数和密度函数,已知两个边缘密度函数求f(x,y)

    题型如下:给出F(x,y),让我们求F(x),F(y) 步骤: F X ( x ) = F ( x , + ∞ ) F Y ( y ) = F ( + ∞ , y ) F_X(x)=F(x,+∞) \\\\F_Y(y)=F(+∞,y) F X ​ ( x ) = F ( x , + ∞ ) F Y ​ ( y ) = F ( + ∞ , y ) 直接做上面那道例题: 题干:给出F(x,y),让我们求f(x),f(y) 方法: f X ( x ) = ∫ − ∞ + ∞ f ( x , y ) d y f Y ( y )

    2024年02月12日
    浏览(39)
  • 机器学习 C4.5算法原理 + 决策树分裂详解(离散属性+连续属性) 附python代码

    一.C4.5算法的简介: C4.5并不是单单一个算法而是 一套算法 ,主要用于对机器学习和数据挖掘中的分类问题。它是一种有监督的学习,也就是说对于该算法我们需要 先给它们提供一个数据集 ,这个数据集包含多个实例,每个实例都包含多个属性,该实例用这些属性描述, 根

    2024年02月08日
    浏览(54)
  • 《人工智能-机器学习》数据预处理和机器学习算法(以企鹅penguins数据集为例)

    本项目使用到的数据集链接: https://tianchi-media.oss-cn-beijing.aliyuncs.com/DSW/6tree/penguins_raw.csv 加载给定或者自行选定的数据集,对数据进行查看和理解,例如样本数量,各特征数据类型、分布、特征和标签所表达的含义等,然后对其进行数据预处理工作,包括但不限于对敏感数据

    2024年02月10日
    浏览(58)
  • 探索人工智能 | 模型训练 使用算法和数据对机器学习模型进行参数调整和优化

    模型训练是指 使用算法和数据对机器学习模型进行参数调整和优化 的过程。模型训练一般包含以下步骤:数据收集、数据预处理、模型选择、模型训练、模型评估、超参数调优、模型部署、持续优化。 数据收集是指为机器学习或数据分析任务收集和获取用于训练或分析的数

    2024年02月12日
    浏览(56)
  • 离散数据与连续数据

    离散数据是指其数值只能用自然数或整数单位计算的数据。例如:企业个数、职工人数、设备台数等,只能按计量单位数计数。这种数据的数值一般用计数方法取得。在统计学中,数据按变量值是否连续可分为连续数据与离散数据两种。 在一定区间内可以任意取值的数据叫连

    2024年02月16日
    浏览(25)
  • 【人工智能】机器学习算法综述及常见算法详解

    目录 推荐 1、机器学习算法简介 1.1 机器学习算法包含的两个步骤 1.2 机器学习算法的分类 2、线性回归算法 2.1 线性回归的假设是什么? 2.2 如何确定线性回归模型的拟合优度? 2.3 如何处理线性回归中的异常值? 3、逻辑回归算法 3.1 什么是逻辑函数? 3.2 逻辑回归可以用于多类

    2024年04月22日
    浏览(45)
  • 人工智能-机器学习-深度学习-分类与算法梳理

    目前人工智能的概念层出不穷,容易搞混,理清脉络,有益新知识入脑。 为便于梳理,本文只有提纲,且笔者准备仓促,敬请勘误,不甚感激。 符号主义(Symbolists) 基于逻辑推理的智能模拟方法。最喜欢的算法是:规则和决策树。符号主义的代表性成果有启发式程序、专家系

    2024年02月03日
    浏览(87)
  • Java语言开发在线小说推荐网 小说推荐系统 基于用户、物品的协同过滤推荐算法 SSM(Spring+SpringMVC+Mybatis)开发框架 大数据、人工智能、机器学习开发

    1、开发工具和使用技术 MyEclipse10/Eclipse/IDEA,jdk1.8,mysql5.5/mysql8,navicat数据库管理工具,tomcat,SSM(spring+springmvc+mybatis)开发框架,jsp页面,javascript脚本,jquery脚本,bootstrap前端框架(用户端),layui前端框架(管理员端),layer弹窗组件等。 2、实现功能 前台用户包含:注

    2023年04月26日
    浏览(79)
  • 人工智能-10种机器学习常见算法

    机器学习是目前行业的一个创新且重要的领域。今天,给大家介绍机器学习中的10种常见的算法,希望可以帮助大家适应机器学习的世界。 线性回归(Linear Regression)是目前机器学习算法中最流行的一种,线性回归算法就是要找一条直线,并且让这条直线尽可能地拟合散点图中的

    2023年04月08日
    浏览(50)
  • 人工智能|机器学习——DBSCAN聚类算法(密度聚类)

    DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一种基于密度的聚类算法,簇集的划定完全由样本的聚集程度决定。聚集程度不足以构成簇落的那些样本视为噪声点,因此DBSCAN聚类的方式也可以用于异常点的检测。 算法的关键在于样本的‘聚集程度’,这个程度的刻画

    2024年04月10日
    浏览(78)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包