常用的十种算法--动态规划算法

这篇具有很好参考价值的文章主要介绍了常用的十种算法--动态规划算法。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1.动态规划算法介绍:

        动态规划算法通常用于求解具有某种最优性质的问题。在这类问题中,可能会有许多可行解。每一个解都对应于一个值,我们希望找到具有最优值的解。动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。与分治法不同的是,适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的。若用分治法来解这类问题,则分解得到的子问题数目太多,有些子问题被重复计算了很多次。如果我们能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,这样就可以避免大量的重复计算,节省时间。我们可以用一个表来记录所有已解的子问题的答案。不管该子问题以后是否被用到,只要它被计算过,就将其结果填入表中。这就是动态规划法的基本思路。具体的动态规划算法多种多样,但它们具有相同的填表格式。

2.动态规划算法实现:

        给定一个矩阵m,从左上角开始每次只能向右走或者向下走,最后达到右下角的位置,路径中所有数字累加起来就是路径和,返回所有路径的最小路径和,如果给定的m如下,那么路径1,3,1,0,6,1,0就是最小路径和,返回12。

动态规划算法有哪些,数据结构与算法,算法,动态规划

 3.代码实现:

package algorithm;

/**
 * @author WuChenGuang
 */
public class Dynamic {
    public static void main(String[] args) {
        
        int[][] array = {{1, 3, 5, 9}, {8, 1, 3, 4}, {5, 0, 6, 1}, {8, 8, 4, 0}};
        System.out.println(dynamic(array));
    }

    public static int dynamic(int[][] array) {
        if (array.length == 0) {
            return 0;
        }

        // 声明一个新的二维数组,用来存储计算路径值
        int[][] dp = new int[array.length][array[0].length];
        dp[0][0] = array[0][0];
        // 从第一行左边开始计算路径值
        for (int i = 1; i < dp[0].length; i++) {
            dp[0][i] = dp[0][i - 1] + array[0][i];
        }

        for (int i = 1; i < array.length; i++) {
            // 遍历每行
            for (int j = 0; j < dp[i].length; j++) {
                if (j == 0) {
                    dp[i][j] = dp[i - 1][j] + array[i][j];
                } else if (dp[i - 1][j] < dp[i][j - 1]) {
                    //上边路径小
                    dp[i][j] = dp[i - 1][j] + array[i][j];
                } else {
                    dp[i][j] = dp[i][j - 1] + array[i][j];
                }
            }
        }

        return dp[dp.length - 1][dp[dp.length - 1].length - 1];
    }
}

运行结果:

动态规划算法有哪些,数据结构与算法,算法,动态规划文章来源地址https://www.toymoban.com/news/detail-572778.html

到了这里,关于常用的十种算法--动态规划算法的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 数据结构与算法-动态规划

    (我猜是做的多了背的题多了就自然懂了) 迭代法一般没有通用去重方式,因为已经相当于递归去重后了 这两个问题其实是一个问题,一般直接写出的没有去重的递归法,复杂度很高,此时需要使用备忘录去重,而备忘录去重时间复杂度和使用dp数组进行迭代求解时间复杂度相同

    2024年02月04日
    浏览(46)
  • 计算机视觉常见的十种图像标注方法

    语义分割是指根据物体的属性,对复杂不规则图片进行进行区域划分,并标注对应上属性,以帮助训练图像识别模型,常应用于自动驾驶、人机交互、虚拟现实等领域。 矩形框标注又叫拉框标注,拉框标注是图像标注中极为常见的一种任务类型,主要是指用2D框、3D框、多边

    2023年04月21日
    浏览(37)
  • 数据结构与算法 | 动态规划算法(Dynamic Programming)

    上一篇文末已经提到了记忆化搜索是动态规划(Dynamic Programming)的一种形式,是一种自顶向下(Top-Down)的思考方式,通常采用递归的编码形式;既然动态规划有自顶向下(Top-Down)的递归形式,自然想到对应的另外一种思考方式 自底向上( Bottom-Up ) ,也就是本篇要写的内

    2024年02月05日
    浏览(46)
  • python算法与数据结构---动态规划

    记不住过去的人,注定要重蹈覆辙。 对于一个模型为n的问题,将其分解为k个规模较小的子问题(阶段),按顺序求解子问题,前一子问题的解,为后一子问题提供有用的信息。在求解任一子问题时,通过决策求得局部最优解,依次解决各子问题。最后通过简单的判断,得到

    2024年02月20日
    浏览(76)
  • 数据结构与算法之贪心&动态规划

            一:思考         1.某天早上公司领导找你解决一个问题,明天公司有N个同等级的会议需要使用同一个会议室,现在给你这个N个会议的开始和结束 时间,你怎么样安排才能使会议室最大利用?即安排最多场次的会议?电影的话 那肯定是最多加票价最高的,入场

    2024年02月09日
    浏览(47)
  • 数据结构与算法——数据结构有哪些,常用数据结构详解

    数据结构是学习数据存储方式的一门学科,那么,数据存储方式有哪几种呢?下面将对数据结构的学习内容做一个简要的总结。 数据结构大致包含以下几种存储结构: 线性表,还可细分为顺序表、链表、栈和队列; 树结构,包括普通树,二叉树,线索二叉树等; 图存储结构

    2024年02月15日
    浏览(63)
  • Java数据结构与算法----动态规划(背包篇)

    1.1.算法思路 0/1背包是动态规划、背包问题中最经典的问题啦!它主要的问题是: 给定n种物品、这n种物品的重量分别是,价值分别是 ,而你有一个容量为C的背包,请问如何求出所能拿的最大价值呢? 对于动态规划,我们先需要找到一条推导公式,然后确定边界: 我们设

    2024年02月07日
    浏览(50)
  • 数据结构与算法:动态规划(Dynamic Programming)详解

    动态规划(Dynamic Programming,简称DP) 是一种在数学、管理科学、计算机科学、经济学和生物信息学等领域中使用的,通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。动态规划经常被用于求解优化问题。 动态规划的核心思想是将复杂问题分解为更小的子问

    2024年04月25日
    浏览(48)
  • ​Python—数据结构与算法​---动态规划—DP算法(Dynamic Programing)

    目录 我们一路奋战, 不是为了改变世界, 而是为了不让世界改变我们。 动态规划——DP算法(Dynamic Programing) 一、🏔斐波那契数列(递归VS动态规划) 1、🐒斐波那契数列——递归实现(python语言)——自顶向下 2、🐒斐波那契数列——动态规划实现(python语言)——自底

    2024年02月10日
    浏览(40)
  • 【数据结构与算法】Kadane‘s算法(动态规划、最大子数组和)

    Kadane\\\'s 算法是一种用于解决最大子数组和问题的动态规划算法。这类问题的目标是在给定整数数组中找到一个连续的子数组,使其元素之和最大(数组含有负数)。 算法的核心思想是通过迭代数组的每个元素,维护两个变量来跟踪局部最优解和全局最优解。 以下是Kadane’s算

    2024年03月22日
    浏览(102)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包