Python Unet ++ :医学图像分割,医学细胞分割,Unet医学图像处理,语义分割

这篇具有很好参考价值的文章主要介绍了Python Unet ++ :医学图像分割,医学细胞分割,Unet医学图像处理,语义分割。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一,语义分割:分割领域前几年的发展

医学图像分割python,人工智能,医学影像处理,医学语义分割,人工智能,细胞分割,Unet++,语义分割,医学图像处理

图像分割是机器视觉任务的一个重要基础任务,在图像分析、自动驾驶、视频监控等方面都有很重要的作用。图像分割可以被看成一个分类任务,需要给每个像素进行分类,所以就比图像分类任务更加复杂。此处主要介绍 Deep Learning-based 相关方法。

医学图像分割python,人工智能,医学影像处理,医学语义分割,人工智能,细胞分割,Unet++,语义分割,医学图像处理

 文章来源地址https://www.toymoban.com/news/detail-578367.html

医学图像分割python,人工智能,医学影像处理,医学语义分割,人工智能,细胞分割,Unet++,语义分割,医学图像处理

 

医学图像分割python,人工智能,医学影像处理,医学语义分割,人工智能,细胞分割,Unet++,语义分割,医学图像处理

医学图像分割python,人工智能,医学影像处理,医学语义分割,人工智能,细胞分割,Unet++,语义分割,医学图像处理

 

医学图像分割python,人工智能,医学影像处理,医学语义分割,人工智能,细胞分割,Unet++,语义分割,医学图像处理

 主要介绍unet和unet++

医学图像分割python,人工智能,医学影像处理,医学语义分割,人工智能,细胞分割,Unet++,语义分割,医学图像处理

医学图像分割python,人工智能,医学影像处理,医学语义分割,人工智能,细胞分割,Unet++,语义分割,医学图像处理

 

医学图像分割python,人工智能,医学影像处理,医学语义分割,人工智能,细胞分割,Unet++,语义分割,医学图像处理

医学图像分割python,人工智能,医学影像处理,医学语义分割,人工智能,细胞分割,Unet++,语义分割,医学图像处理

医学图像分割python,人工智能,医学影像处理,医学语义分割,人工智能,细胞分割,Unet++,语义分割,医学图像处理

二,数据介绍---医学细胞分割任务

原数据:

医学图像分割python,人工智能,医学影像处理,医学语义分割,人工智能,细胞分割,Unet++,语义分割,医学图像处理

标签数据: 

 医学图像分割python,人工智能,医学影像处理,医学语义分割,人工智能,细胞分割,Unet++,语义分割,医学图像处理

 三,代码部分

模型包含以下文件:

医学图像分割python,人工智能,医学影像处理,医学语义分割,人工智能,细胞分割,Unet++,语义分割,医学图像处理

archs.py为模型的主体部分:

import torch
from torch import nn

__all__ = ['UNet', 'NestedUNet']


class VGGBlock(nn.Module):
    def __init__(self, in_channels, middle_channels, out_channels):
        super().__init__()
        self.relu = nn.ReLU(inplace=True)
        self.conv1 = nn.Conv2d(in_channels, middle_channels, 3, padding=1)
        self.bn1 = nn.BatchNorm2d(middle_channels)
        self.conv2 = nn.Conv2d(middle_channels, out_channels, 3, padding=1)
        self.bn2 = nn.BatchNorm2d(out_channels)

    def forward(self, x):
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        return out


class UNet(nn.Module):
    def __init__(self, num_classes, input_channels=3, **kwargs):
        super().__init__()

        nb_filter = [32, 64, 128, 256, 512]

        self.pool = nn.MaxPool2d(2, 2)
        self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)#scale_factor:放大的倍数  插值

        self.conv0_0 = VGGBlock(input_channels, nb_filter[0], nb_filter[0])
        self.conv1_0 = VGGBlock(nb_filter[0], nb_filter[1], nb_filter[1])
        self.conv2_0 = VGGBlock(nb_filter[1], nb_filter[2], nb_filter[2])
        self.conv3_0 = VGGBlock(nb_filter[2], nb_filter[3], nb_filter[3])
        self.conv4_0 = VGGBlock(nb_filter[3], nb_filter[4], nb_filter[4])

        self.conv3_1 = VGGBlock(nb_filter[3]+nb_filter[4], nb_filter[3], nb_filter[3])
        self.conv2_2 = VGGBlock(nb_filter[2]+nb_filter[3], nb_filter[2], nb_filter[2])
        self.conv1_3 = VGGBlock(nb_filter[1]+nb_filter[2], nb_filter[1], nb_filter[1])
        self.conv0_4 = VGGBlock(nb_filter[0]+nb_filter[1], nb_filter[0], nb_filter[0])

        self.final = nn.Conv2d(nb_filter[0], num_classes, kernel_size=1)


    def forward(self, input):
        x0_0 = self.conv0_0(input)
        x1_0 = self.conv1_0(self.pool(x0_0))
        x2_0 = self.conv2_0(self.pool(x1_0))
        x3_0 = self.conv3_0(self.pool(x2_0))
        x4_0 = self.conv4_0(self.pool(x3_0))

        x3_1 = self.conv3_1(torch.cat([x3_0, self.up(x4_0)], 1))
        x2_2 = self.conv2_2(torch.cat([x2_0, self.up(x3_1)], 1))
        x1_3 = self.conv1_3(torch.cat([x1_0, self.up(x2_2)], 1))
        x0_4 = self.conv0_4(torch.cat([x0_0, self.up(x1_3)], 1))

        output = self.final(x0_4)
        return output


class NestedUNet(nn.Module):
    def __init__(self, num_classes, input_channels=3, deep_supervision=False, **kwargs):
        super().__init__()

        nb_filter = [32, 64, 128, 256, 512]

        self.deep_supervision = deep_supervision

        self.pool = nn.MaxPool2d(2, 2)
        self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)

        self.conv0_0 = VGGBlock(input_channels, nb_filter[0], nb_filter[0])
        self.conv1_0 = VGGBlock(nb_filter[0], nb_filter[1], nb_filter[1])
        self.conv2_0 = VGGBlock(nb_filter[1], nb_filter[2], nb_filter[2])
        self.conv3_0 = VGGBlock(nb_filter[2], nb_filter[3], nb_filter[3])
        self.conv4_0 = VGGBlock(nb_filter[3], nb_filter[4], nb_filter[4])

        self.conv0_1 = VGGBlock(nb_filter[0]+nb_filter[1], nb_filter[0], nb_filter[0])
        self.conv1_1 = VGGBlock(nb_filter[1]+nb_filter[2], nb_filter[1], nb_filter[1])
        self.conv2_1 = VGGBlock(nb_filter[2]+nb_filter[3], nb_filter[2], nb_filter[2])
        self.conv3_1 = VGGBlock(nb_filter[3]+nb_filter[4], nb_filter[3], nb_filter[3])

        self.conv0_2 = VGGBlock(nb_filter[0]*2+nb_filter[1], nb_filter[0], nb_filter[0])
        self.conv1_2 = VGGBlock(nb_filter[1]*2+nb_filter[2], nb_filter[1], nb_filter[1])
        self.conv2_2 = VGGBlock(nb_filter[2]*2+nb_filter[3], nb_filter[2], nb_filter[2])

        self.conv0_3 = VGGBlock(nb_filter[0]*3+nb_filter[1], nb_filter[0], nb_filter[0])
        self.conv1_3 = VGGBlock(nb_filter[1]*3+nb_filter[2], nb_filter[1], nb_filter[1])

        self.conv0_4 = VGGBlock(nb_filter[0]*4+nb_filter[1], nb_filter[0], nb_filter[0])

        if self.deep_supervision:
            self.final1 = nn.Conv2d(nb_filter[0], num_classes, kernel_size=1)
            self.final2 = nn.Conv2d(nb_filter[0], num_classes, kernel_size=1)
            self.final3 = nn.Conv2d(nb_filter[0], num_classes, kernel_size=1)
            self.final4 = nn.Conv2d(nb_filter[0], num_classes, kernel_size=1)
        else:
            self.final = nn.Conv2d(nb_filter[0], num_classes, kernel_size=1)


    def forward(self, input):
        print('input:',input.shape)
        x0_0 = self.conv0_0(input)
        print('x0_0:',x0_0.shape)
        x1_0 = self.conv1_0(self.pool(x0_0))
        print('x1_0:',x1_0.shape)
        x0_1 = self.conv0_1(torch.cat([x0_0, self.up(x1_0)], 1))
        print('x0_1:',x0_1.shape)

        x2_0 = self.conv2_0(self.pool(x1_0))
        print('x2_0:',x2_0.shape)
        x1_1 = self.conv1_1(torch.cat([x1_0, self.up(x2_0)], 1))
        print('x1_1:',x1_1.shape)
        x0_2 = self.conv0_2(torch.cat([x0_0, x0_1, self.up(x1_1)], 1))
        print('x0_2:',x0_2.shape)

        x3_0 = self.conv3_0(self.pool(x2_0))
        print('x3_0:',x3_0.shape)
        x2_1 = self.conv2_1(torch.cat([x2_0, self.up(x3_0)], 1))
        print('x2_1:',x2_1.shape)
        x1_2 = self.conv1_2(torch.cat([x1_0, x1_1, self.up(x2_1)], 1))
        print('x1_2:',x1_2.shape)
        x0_3 = self.conv0_3(torch.cat([x0_0, x0_1, x0_2, self.up(x1_2)], 1))
        print('x0_3:',x0_3.shape)
        x4_0 = self.conv4_0(self.pool(x3_0))
        print('x4_0:',x4_0.shape)
        x3_1 = self.conv3_1(torch.cat([x3_0, self.up(x4_0)], 1))
        print('x3_1:',x3_1.shape)
        x2_2 = self.conv2_2(torch.cat([x2_0, x2_1, self.up(x3_1)], 1))
        print('x2_2:',x2_2.shape)
        x1_3 = self.conv1_3(torch.cat([x1_0, x1_1, x1_2, self.up(x2_2)], 1))
        print('x1_3:',x1_3.shape)
        x0_4 = self.conv0_4(torch.cat([x0_0, x0_1, x0_2, x0_3, self.up(x1_3)], 1))
        print('x0_4:',x0_4.shape)

        if self.deep_supervision:
            output1 = self.final1(x0_1)
            output2 = self.final2(x0_2)
            output3 = self.final3(x0_3)
            output4 = self.final4(x0_4)
            return [output1, output2, output3, output4]

        else:
            output = self.final(x0_4)
            return output

dataset.py为数据的预处理部分

import os

import cv2
import numpy as np
import torch
import torch.utils.data


class Dataset(torch.utils.data.Dataset):
    def __init__(self, img_ids, img_dir, mask_dir, img_ext, mask_ext, num_classes, transform=None):
        """
        Args:
            img_ids (list): Image ids.
            img_dir: Image file directory.
            mask_dir: Mask file directory.
            img_ext (str): Image file extension.
            mask_ext (str): Mask file extension.
            num_classes (int): Number of classes.
            transform (Compose, optional): Compose transforms of albumentations. Defaults to None.
        
        Note:
            Make sure to put the files as the following structure:
            <dataset name>
            ├── images
            |   ├── 0a7e06.jpg
            │   ├── 0aab0a.jpg
            │   ├── 0b1761.jpg
            │   ├── ...
            |
            └── masks
                ├── 0
                |   ├── 0a7e06.png
                |   ├── 0aab0a.png
                |   ├── 0b1761.png
                |   ├── ...
                |
                ├── 1
                |   ├── 0a7e06.png
                |   ├── 0aab0a.png
                |   ├── 0b1761.png
                |   ├── ...
                ...
        """
        self.img_ids = img_ids
        self.img_dir = img_dir
        self.mask_dir = mask_dir
        self.img_ext = img_ext
        self.mask_ext = mask_ext
        self.num_classes = num_classes
        self.transform = transform

    def __len__(self):
        return len(self.img_ids)

    def __getitem__(self, idx):
        img_id = self.img_ids[idx]
        
        img = cv2.imread(os.path.join(self.img_dir, img_id + self.img_ext))

        mask = []
        for i in range(self.num_classes):
            mask.append(cv2.imread(os.path.join(self.mask_dir, str(i),
                        img_id + self.mask_ext), cv2.IMREAD_GRAYSCALE)[..., None])
        mask = np.dstack(mask)

        if self.transform is not None:
            augmented = self.transform(image=img, mask=mask)#这个包比较方便,能把mask也一并做掉
            img = augmented['image']#参考https://github.com/albumentations-team/albumentations
            mask = augmented['mask']
        
        img = img.astype('float32') / 255
        img = img.transpose(2, 0, 1)
        mask = mask.astype('float32') / 255
        mask = mask.transpose(2, 0, 1)
        
        return img, mask, {'img_id': img_id}

losses.py

import torch
import torch.nn as nn
import torch.nn.functional as F

try:
    from LovaszSoftmax.pytorch.lovasz_losses import lovasz_hinge
except ImportError:
    pass

__all__ = ['BCEDiceLoss', 'LovaszHingeLoss']


class BCEDiceLoss(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, input, target):
        bce = F.binary_cross_entropy_with_logits(input, target)
        smooth = 1e-5
        input = torch.sigmoid(input)
        num = target.size(0)
        input = input.view(num, -1)
        target = target.view(num, -1)
        intersection = (input * target)
        dice = (2. * intersection.sum(1) + smooth) / (input.sum(1) + target.sum(1) + smooth)
        dice = 1 - dice.sum() / num
        return 0.5 * bce + dice


class LovaszHingeLoss(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, input, target):
        input = input.squeeze(1)
        target = target.squeeze(1)
        loss = lovasz_hinge(input, target, per_image=True)

        return loss

metrics.py 模型效果评价指标

import numpy as np
import torch
import torch.nn.functional as F


def iou_score(output, target):
    smooth = 1e-5

    if torch.is_tensor(output):
        output = torch.sigmoid(output).data.cpu().numpy()
    if torch.is_tensor(target):
        target = target.data.cpu().numpy()
    output_ = output > 0.5
    target_ = target > 0.5
    intersection = (output_ & target_).sum()
    union = (output_ | target_).sum()

    return (intersection + smooth) / (union + smooth)


def dice_coef(output, target):
    smooth = 1e-5

    output = torch.sigmoid(output).view(-1).data.cpu().numpy()
    target = target.view(-1).data.cpu().numpy()
    intersection = (output * target).sum()

    return (2. * intersection + smooth) / \
        (output.sum() + target.sum() + smooth)

preprocess.py 数据标签的合并处理,将同一张图的多个标签数据合并为一张

import os
from glob import glob

import cv2
import numpy as np
from tqdm import tqdm


def main():
    img_size = 96

    paths = glob('inputs/stage1_train/*')

    os.makedirs('inputs/dsb2018_%d/images' % img_size, exist_ok=True)
    os.makedirs('inputs/dsb2018_%d/masks/0' % img_size, exist_ok=True)

    for i in tqdm(range(len(paths))):
        path = paths[i]
        img = cv2.imread(os.path.join(path, 'images',
                         os.path.basename(path) + '.png'))
        mask = np.zeros((img.shape[0], img.shape[1]))
        for mask_path in glob(os.path.join(path, 'masks', '*')):
            mask_ = cv2.imread(mask_path, cv2.IMREAD_GRAYSCALE) > 127
            mask[mask_] = 1
        if len(img.shape) == 2:
            img = np.tile(img[..., None], (1, 1, 3))
        if img.shape[2] == 4:
            img = img[..., :3]
        img = cv2.resize(img, (img_size, img_size))
        mask = cv2.resize(mask, (img_size, img_size))
        cv2.imwrite(os.path.join('inputs/dsb2018_%d/images' % img_size,
                    os.path.basename(path) + '.png'), img)
        cv2.imwrite(os.path.join('inputs/dsb2018_%d/masks/0' % img_size,
                    os.path.basename(path) + '.png'), (mask * 255).astype('uint8'))


if __name__ == '__main__':
    main()

 utils.py 其它设置

import argparse


def str2bool(v):
    if v.lower() in ['true', 1]:
        return True
    elif v.lower() in ['false', 0]:
        return False
    else:
        raise argparse.ArgumentTypeError('Boolean value expected.')


def count_params(model):
    return sum(p.numel() for p in model.parameters() if p.requires_grad)


class AverageMeter(object):
    """Computes and stores the average and current value"""

    def __init__(self):
        self.reset()

    def reset(self):
        self.val = 0
        self.avg = 0
        self.sum = 0
        self.count = 0

    def update(self, val, n=1):
        self.val = val
        self.sum += val * n
        self.count += n
        self.avg = self.sum / self.count

train.py 模型训练

import argparse
import os
from collections import OrderedDict
from glob import glob

import pandas as pd
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.optim as optim
import yaml
import albumentations as albu
from albumentations.augmentations import transforms
from albumentations.core.composition import Compose, OneOf
from sklearn.model_selection import train_test_split
from torch.optim import lr_scheduler
from tqdm import tqdm

import archs
import losses
from dataset import Dataset
from metrics import iou_score
from utils import AverageMeter, str2bool

ARCH_NAMES = archs.__all__
LOSS_NAMES = losses.__all__
LOSS_NAMES.append('BCEWithLogitsLoss')

"""

指定参数:
--dataset dsb2018_96 
--arch NestedUNet

"""

def parse_args():
    parser = argparse.ArgumentParser()

    parser.add_argument('--name', default=None,
                        help='model name: (default: arch+timestamp)')
    parser.add_argument('--epochs', default=100, type=int, metavar='N',
                        help='number of total epochs to run')
    parser.add_argument('-b', '--batch_size', default=8, type=int,
                        metavar='N', help='mini-batch size (default: 16)')
    
    # model
    parser.add_argument('--arch', '-a', metavar='ARCH', default='NestedUNet',
                        choices=ARCH_NAMES,
                        help='model architecture: ' +
                        ' | '.join(ARCH_NAMES) +
                        ' (default: NestedUNet)')
    parser.add_argument('--deep_supervision', default=False, type=str2bool)
    parser.add_argument('--input_channels', default=3, type=int,
                        help='input channels')
    parser.add_argument('--num_classes', default=1, type=int,
                        help='number of classes')
    parser.add_argument('--input_w', default=96, type=int,
                        help='image width')
    parser.add_argument('--input_h', default=96, type=int,
                        help='image height')
    
    # loss
    parser.add_argument('--loss', default='BCEDiceLoss',
                        choices=LOSS_NAMES,
                        help='loss: ' +
                        ' | '.join(LOSS_NAMES) +
                        ' (default: BCEDiceLoss)')
    
    # dataset
    parser.add_argument('--dataset', default='dsb2018_96',
                        help='dataset name')
    parser.add_argument('--img_ext', default='.png',
                        help='image file extension')
    parser.add_argument('--mask_ext', default='.png',
                        help='mask file extension')

    # optimizer
    parser.add_argument('--optimizer', default='SGD',
                        choices=['Adam', 'SGD'],
                        help='loss: ' +
                        ' | '.join(['Adam', 'SGD']) +
                        ' (default: Adam)')
    parser.add_argument('--lr', '--learning_rate', default=1e-3, type=float,
                        metavar='LR', help='initial learning rate')
    parser.add_argument('--momentum', default=0.9, type=float,
                        help='momentum')
    parser.add_argument('--weight_decay', default=1e-4, type=float,
                        help='weight decay')
    parser.add_argument('--nesterov', default=False, type=str2bool,
                        help='nesterov')

    # scheduler
    parser.add_argument('--scheduler', default='CosineAnnealingLR',
                        choices=['CosineAnnealingLR', 'ReduceLROnPlateau', 'MultiStepLR', 'ConstantLR'])
    parser.add_argument('--min_lr', default=1e-5, type=float,
                        help='minimum learning rate')
    parser.add_argument('--factor', default=0.1, type=float)
    parser.add_argument('--patience', default=2, type=int)
    parser.add_argument('--milestones', default='1,2', type=str)
    parser.add_argument('--gamma', default=2/3, type=float)
    parser.add_argument('--early_stopping', default=-1, type=int,
                        metavar='N', help='early stopping (default: -1)')
    
    parser.add_argument('--num_workers', default=0, type=int)

    config = parser.parse_args()

    return config


def train(config, train_loader, model, criterion, optimizer):
    avg_meters = {'loss': AverageMeter(),
                  'iou': AverageMeter()}

    model.train()

    pbar = tqdm(total=len(train_loader))
    for input, target, _ in train_loader:
        input = input.cuda()
        target = target.cuda()

        # compute output
        if config['deep_supervision']:
            outputs = model(input)
            loss = 0
            for output in outputs:
                loss += criterion(output, target)
            loss /= len(outputs)
            iou = iou_score(outputs[-1], target)
        else:
            output = model(input)
            loss = criterion(output, target)
            iou = iou_score(output, target)

        # compute gradient and do optimizing step
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        avg_meters['loss'].update(loss.item(), input.size(0))
        avg_meters['iou'].update(iou, input.size(0))

        postfix = OrderedDict([
            ('loss', avg_meters['loss'].avg),
            ('iou', avg_meters['iou'].avg),
        ])
        pbar.set_postfix(postfix)
        pbar.update(1)
    pbar.close()

    return OrderedDict([('loss', avg_meters['loss'].avg),
                        ('iou', avg_meters['iou'].avg)])


def validate(config, val_loader, model, criterion):
    avg_meters = {'loss': AverageMeter(),
                  'iou': AverageMeter()}

    # switch to evaluate mode
    model.eval()

    with torch.no_grad():
        pbar = tqdm(total=len(val_loader))
        for input, target, _ in val_loader:
            input = input.cuda()
            target = target.cuda()

            # compute output
            if config['deep_supervision']:
                outputs = model(input)
                loss = 0
                for output in outputs:
                    loss += criterion(output, target)
                loss /= len(outputs)
                iou = iou_score(outputs[-1], target)
            else:
                output = model(input)
                loss = criterion(output, target)
                iou = iou_score(output, target)

            avg_meters['loss'].update(loss.item(), input.size(0))
            avg_meters['iou'].update(iou, input.size(0))

            postfix = OrderedDict([
                ('loss', avg_meters['loss'].avg),
                ('iou', avg_meters['iou'].avg),
            ])
            pbar.set_postfix(postfix)
            pbar.update(1)
        pbar.close()

    return OrderedDict([('loss', avg_meters['loss'].avg),
                        ('iou', avg_meters['iou'].avg)])


def main():
    config = vars(parse_args())

    if config['name'] is None:
        if config['deep_supervision']:
            config['name'] = '%s_%s_wDS' % (config['dataset'], config['arch'])
        else:
            config['name'] = '%s_%s_woDS' % (config['dataset'], config['arch'])
    os.makedirs('models/%s' % config['name'], exist_ok=True)

    print('-' * 20)
    for key in config:
        print('%s: %s' % (key, config[key]))
    print('-' * 20)

    with open('models/%s/config.yml' % config['name'], 'w') as f:
        yaml.dump(config, f)

    # define loss function (criterion)
    if config['loss'] == 'BCEWithLogitsLoss':
        criterion = nn.BCEWithLogitsLoss().cuda()#WithLogits 就是先将输出结果经过sigmoid再交叉熵
    else:
        criterion = losses.__dict__[config['loss']]().cuda()

    cudnn.benchmark = True

    # create model
    print("=> creating model %s" % config['arch'])
    model = archs.__dict__[config['arch']](config['num_classes'],
                                           config['input_channels'],
                                           config['deep_supervision'])

    model = model.cuda()

    params = filter(lambda p: p.requires_grad, model.parameters())
    if config['optimizer'] == 'Adam':
        optimizer = optim.Adam(
            params, lr=config['lr'], weight_decay=config['weight_decay'])
    elif config['optimizer'] == 'SGD':
        optimizer = optim.SGD(params, lr=config['lr'], momentum=config['momentum'],
                              nesterov=config['nesterov'], weight_decay=config['weight_decay'])
    else:
        raise NotImplementedError

    if config['scheduler'] == 'CosineAnnealingLR':
        scheduler = lr_scheduler.CosineAnnealingLR(
            optimizer, T_max=config['epochs'], eta_min=config['min_lr'])
    elif config['scheduler'] == 'ReduceLROnPlateau':
        scheduler = lr_scheduler.ReduceLROnPlateau(optimizer, factor=config['factor'], patience=config['patience'],
                                                   verbose=1, min_lr=config['min_lr'])
    elif config['scheduler'] == 'MultiStepLR':
        scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=[int(e) for e in config['milestones'].split(',')], gamma=config['gamma'])
    elif config['scheduler'] == 'ConstantLR':
        scheduler = None
    else:
        raise NotImplementedError

    # Data loading code
    img_ids = glob(os.path.join('inputs', config['dataset'], 'images', '*' + config['img_ext']))
    img_ids = [os.path.splitext(os.path.basename(p))[0] for p in img_ids]

    train_img_ids, val_img_ids = train_test_split(img_ids, test_size=0.2, random_state=41)
    #数据增强:需要安装albumentations包
    train_transform = Compose([
        #角度旋转
        albu.RandomRotate90(),
        #图像翻转
        albu.Flip(),
        OneOf([
            transforms.HueSaturationValue(),
            transforms.RandomBrightness(),
            transforms.RandomContrast(),
        ], p=1),#按照归一化的概率选择执行哪一个
        albu.Resize(config['input_h'], config['input_w']),
        albu.Normalize(),
    ])

    val_transform = Compose([
        albu.Resize(config['input_h'], config['input_w']),
        albu.Normalize(),
    ])

    train_dataset = Dataset(
        img_ids=train_img_ids,
        img_dir=os.path.join('inputs', config['dataset'], 'images'),
        mask_dir=os.path.join('inputs', config['dataset'], 'masks'),
        img_ext=config['img_ext'],
        mask_ext=config['mask_ext'],
        num_classes=config['num_classes'],
        transform=train_transform)
    val_dataset = Dataset(
        img_ids=val_img_ids,
        img_dir=os.path.join('inputs', config['dataset'], 'images'),
        mask_dir=os.path.join('inputs', config['dataset'], 'masks'),
        img_ext=config['img_ext'],
        mask_ext=config['mask_ext'],
        num_classes=config['num_classes'],
        transform=val_transform)

    train_loader = torch.utils.data.DataLoader(
        train_dataset,
        batch_size=config['batch_size'],
        shuffle=True,
        num_workers=config['num_workers'],
        drop_last=True)#不能整除的batch是否就不要了
    val_loader = torch.utils.data.DataLoader(
        val_dataset,
        batch_size=config['batch_size'],
        shuffle=False,
        num_workers=config['num_workers'],
        drop_last=False)

    log = OrderedDict([
        ('epoch', []),
        ('lr', []),
        ('loss', []),
        ('iou', []),
        ('val_loss', []),
        ('val_iou', []),
    ])

    best_iou = 0
    trigger = 0
    for epoch in range(config['epochs']):
        print('Epoch [%d/%d]' % (epoch, config['epochs']))

        # train for one epoch
        train_log = train(config, train_loader, model, criterion, optimizer)
        # evaluate on validation set
        val_log = validate(config, val_loader, model, criterion)

        if config['scheduler'] == 'CosineAnnealingLR':
            scheduler.step()
        elif config['scheduler'] == 'ReduceLROnPlateau':
            scheduler.step(val_log['loss'])

        print('loss %.4f - iou %.4f - val_loss %.4f - val_iou %.4f'
              % (train_log['loss'], train_log['iou'], val_log['loss'], val_log['iou']))

        log['epoch'].append(epoch)
        log['lr'].append(config['lr'])
        log['loss'].append(train_log['loss'])
        log['iou'].append(train_log['iou'])
        log['val_loss'].append(val_log['loss'])
        log['val_iou'].append(val_log['iou'])

        pd.DataFrame(log).to_csv('models/%s/log.csv' %
                                 config['name'], index=False)

        trigger += 1

        if val_log['iou'] > best_iou:
            torch.save(model.state_dict(), 'models/%s/model.pth' %
                       config['name'])
            best_iou = val_log['iou']
            print("=> saved best model")
            trigger = 0

        # early stopping
        if config['early_stopping'] >= 0 and trigger >= config['early_stopping']:
            print("=> early stopping")
            break

        torch.cuda.empty_cache()


if __name__ == '__main__':
    main()

四,模型结果:

医学图像分割python,人工智能,医学影像处理,医学语义分割,人工智能,细胞分割,Unet++,语义分割,医学图像处理

医学图像分割python,人工智能,医学影像处理,医学语义分割,人工智能,细胞分割,Unet++,语义分割,医学图像处理

 五:注意事项以及常见问题

安装增加模块albumentations,主要为数据增强模块,方便快捷

pip install albumentations

常见问题:

AttributeError: module ‘cv2’ has no attribute ‘gapi_wip_gst_GStreamerPipeline’

解决:opencv-python-headless和opencv-python的版本对应即可

pip install opencv-python-headless==4.2.0.32 -i https://pypi.tuna.tsinghua.edu.cn/simple

问题2

AttributeError: module ‘albumentations.augmentations.transforms’ has no attribute ‘RandomRotate90’

解决:直接导入import albumentations as albu

医学图像分割python,人工智能,医学影像处理,医学语义分割,人工智能,细胞分割,Unet++,语义分割,医学图像处理

 

到了这里,关于Python Unet ++ :医学图像分割,医学细胞分割,Unet医学图像处理,语义分割的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • python 图像处理——图像分割及经典案例篇之基于颜色的图像分割

    前言 作者在第一部分向大家介绍了图像处理的基础知识,第二部分介绍了图像运算和图像增强,接下来第三部分我们将详细讲解图像分割及图像处理经典案例,该部分属于高阶图像处理知识,能进一步加深我们的理解和实践能力。图像分割是将图像分成若干具有独特性质的区

    2024年02月11日
    浏览(34)
  • 医学图像分割方向优质的论文及其代码【Medical Image Segmentation】UNet、transformer、计算机视觉

      作者:Yifei Chen, Chenyan Zhang, Yifan Ke, Yiyu Huang, Xuezhou Dai, Feiwei Qin   中文摘要: 由于收集过程具有挑战性、标记成本高、信噪比低以及生物医学图像特征复杂,传统的监督学习方法在医学图像分割方面历来遇到一定的限制。 本文提出了一种半监督模型DFCPS,创新性地融合了

    2024年04月13日
    浏览(32)
  • (数字图像处理MATLAB+Python)第十章图像分割-第一、二节:阈值分割和边界分割

    图像分割 :在对图像的研究和应用中,人们往往仅对图像中的某些目标感兴趣,这些目标通常对应图像中具有特定性质的区域。图像分割是指把一幅图像分成不同的具有特定性质区域的图像处理技术,将这些区域分离提取出来,以便进一步提取特征和理解 图像分割方法多种

    2024年02月16日
    浏览(38)
  • (数字图像处理MATLAB+Python)第十章图像分割-第四,五节:分水岭分割和综合案例

    分水岭分割 :图像处理中常用的一种分割方法,它基于图像中灰度或颜色的变化来划分不同的区域。分水岭分割算法的原理是基于地理学上的分水岭概念。将图像看作一个 地貌图 ,在图像中低洼的部分被看作水池,而高处则表示山脉。通过在图像中加入水并让其逐渐充满,

    2024年02月10日
    浏览(31)
  • 基于Unet的BraTS 3d 脑肿瘤医学图像分割,从nii.gz文件中切分出2D图片数据

    3D图像分割一直是医疗领域的难题,在这方面nnunet已经成为了标杆,不过nnunet教程较少,本人之前跑了好久,一直目录报错、格式报错,反正哪里都是报错等等。并且,nnunet对于硬件的要求很高,一般的电脑配置或者低配置的服务器完全带不起来 或者定义conv.3D的unet网络模型

    2024年04月11日
    浏览(32)
  • python数字图像处理基础(五)——Canny边缘检测、图像金字塔、图像分割

    梯度是什么? 梯度就是变化的最快的那个方向 edge = cv2.Canny(image, threshold1, threshold2[, edges[, apertureSize[, L2gradient ]]]) 第一个参数是需要处理的原图像,该图像必须为单通道的灰度图; 第二个参数是阈值1; 第三个参数是阈值2。 原理步骤 1)使用高斯滤波器,以平滑图像,滤除噪

    2024年01月18日
    浏览(33)
  • 模式识别与图像处理课程实验二:基于UNet的目标检测网络

    实验采用Unet目标检测网络实现对目标的检测。例如检测舰船、车辆、人脸、道路等。其中的Unet网络结构如下所示 U-Net 是一个 encoder-decoder 结构,左边一半的 encoder 包括若干卷积,池化,把图像进行下采样,右边的 decoder 进行上采样,恢复到原图的形状,给出每个像素的预测

    2023年04月08日
    浏览(34)
  • 医学影像篇 医学图像预处理之重采样详细说明

    0 1 准备工作 研究前我们先要做好准备工作:(这个准备工作呢就好像小白做菜) 最开始,我们往往主动提出或者被提出了一个临床问题(临床问题可能是老板直接安排的,也可能是在临床工作中提出经过文献调研归纳的),根据提出的临床问题和手头现有的病例,可以建立

    2024年02月04日
    浏览(89)
  • 医学nii图像 预处理——图像裁剪 重采样 灰度区域 归一化 修改图像尺寸

    鄙人主要研究方向为医学图像配准,在使用CT数据集之前需要对数据进行预处理。 常规预处理步骤:(*代表本代码有) 1. 裁剪出ROI区域 。 目的:减小图像尺寸,减小内存消耗,减小无关信息,可提高实验精度 2. 重采样 。 一般会重采样到各向同性,例如,将图像重采样到每体

    2024年02月12日
    浏览(29)
  • 一文整理深度学习【医学图像处理领域期刊和会议】

    参考地址:医学图像处理领域期刊和会议 参考地址:中国计算机学会推荐国际学术会议和期刊目录 期刊名 链接 TMI IEEE Transactions on Medical Imaging MedIA

    2023年04月23日
    浏览(32)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包