Large Language Models (LLMs) 在语义知识方面表现不错,但也有一些不足,如:不能正确计算数学公式、无法获取最新知识新闻
通过 Agents 可以赋予 LLMs 更多能力,让LLM能够计算、上网查询
agent 简单使用
from langchain import OpenAI
# 语言模型
llm = OpenAI(
openai_api_key="OPENAI_API_KEY",
temperature=0,
model_name="text-davinci-003"
)
from langchain.chains import LLMMathChain
from langchain.agents import Tool
# 能计算数学公式的一个chain
llm_math = LLMMathChain(llm=llm)
# initialize the math tool
math_tool = Tool(
name='Calculator',
func=llm_math.run,
description='Useful for when you need to answer questions about math.' # 描述工具能做什么
)
# when giving tools to LLM, we must pass as list of tools
tools = [math_tool]
# 如果 langchain.agents 中有相关工具,则可以直接使用
#from langchain.agents import load_tools
#tools = load_tools(
#['llm-math'],
#llm=llm
)
# 初始化 agent
from langchain.agents import initialize_agent
zero_shot_agent = initialize_agent(
agent="zero-shot-react-description", # 无记忆的agent
tools=tools, # tools 中只有math_tool,所以只能做计算
llm=llm,
verbose=True, # 显示执行过程
max_iterations=3
)
zero_shot_agent("what is (4.5*2.1)^2.2?")
上面的 tools 中只有math_tool,所以 zero_shot_agent 只能做计算,不能回答其它常识问题,可以在 tools 中添加更多工具,使得 zero_shot_agent 拥有更多能力。
# 可以在 tools 中新增聊天工具
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
prompt = PromptTemplate(
input_variables=["query"],
template="{query}"
)
llm_chain = LLMChain(llm=llm, prompt=prompt)
# initialize the LLM tool
llm_tool = Tool(
name='Language Model',
func=llm_chain.run,
description='use this tool for general purpose queries and logic'
)
tools.append(llm_tool)
# reinitialize the agent
zero_shot_agent = initialize_agent(
agent="zero-shot-react-description",
tools=tools,
llm=llm,
verbose=True,
max_iterations=3
)
agent 类型
zero-shot-react-description 无缓存的方式,聊天是单次的,无上下文缓存
zero_shot_agent = initialize_agent(
agent="zero-shot-react-description",
tools=tools,
llm=llm,
verbose=True,
max_iterations=3,
)
conversational-react-description 带缓存
from langchain.memory import ConversationBufferMemory
memory = ConversationBufferMemory(memory_key="chat_history")
conversational_agent = initialize_agent(
agent='conversational-react-description',
tools=tools,
llm=llm,
verbose=True,
max_iterations=3,
memory=memory,
)
react-docstore 可以检索知识库,无缓存
from langchain import Wikipedia
from langchain.agents.react.base import DocstoreExplorer
docstore=DocstoreExplorer(Wikipedia())
tools = [
Tool(
name="Search", # 信息检索
func=docstore.search,
description='search wikipedia'
),
Tool(
name="Lookup", # 匹配相近结果
func=docstore.lookup,
description='lookup a term in wikipedia'
)
]
docstore_agent = initialize_agent(
tools,
llm,
agent="react-docstore",
verbose=True,
max_iterations=3
)
self-ask-with-search 将LLM与搜索引擎结合起来文章来源:https://www.toymoban.com/news/detail-578896.html
from langchain import SerpAPIWrapper
# initialize the search chain
search = SerpAPIWrapper(serpapi_api_key='serp_api_key')
# create a search tool
tools = [
Tool(
name="Intermediate Answer",
func=search.run,
description='google search'
)
]
# initialize the search enabled agent
self_ask_with_search = initialize_agent(
tools,
llm,
agent="self-ask-with-search",
verbose=True
)
参考:
Superpower LLMs with Conversational Agents文章来源地址https://www.toymoban.com/news/detail-578896.html
到了这里,关于LangChain(5)Conversational Agents的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!