SpringCloud系列(十六)[分布式搜索引擎篇] - DSL 查询及相关性算分的学习 (部分)

这篇具有很好参考价值的文章主要介绍了SpringCloud系列(十六)[分布式搜索引擎篇] - DSL 查询及相关性算分的学习 (部分)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

在SpringCloud系列(十五)[分布式搜索引擎篇] - 结合实际应用场景学习并使用 RestClient 客户端 API这篇文章中我们已经对 RestClient 有了初步的了解, 并且已经将一些数据进行了存储, 但是这并不是我们学习 ElasticSearch 的目的, ElasticSearch 最擅长的还是对数据的搜索及分析, 因此本篇博客将对 ElasticSearch 的数据搜索功能进行演示.

①DSL 对文档的查询

常见查询类型:

  • 查询所有: 查询所有数据, 如 match_all;
  • 全文检索查询(full text): 主要利用分词器对用户的输入内容进行分词, 然后去倒排索引库中进行匹配查询, 如 match_query / multi_match_query;
  • 精确查询: 根据精确词条查询数据, 一般是用来查询日期 / 数值等类型的字段, 如 ids / range / term;
  • 地理查询(geo): 通常根据经纬度进行查询, 如 geo_distance / geo_bounding_box;
  • 复合查询(compound): 可以将上面的几种查询类型进行组合, 合并查询条件, 如 bool / function_score.

下面所有的查询语法基本如出一辙:

GET /索引库名/_search
{
  "query": {
    "查询类型": {
      "查询条件": "条件值"
    }
  }
}

1.1 查询所有

GET /hotel/_search
{
  "query": {
    "match_all": {}
  }
}

因为是查询所有的数据, 所以没有查询条件, 查询类型为 match_all, 查询所有一般用不到, 使用场景也就仅限于测试的时候使用;

1.2 全文检索查询

SpringCloud系列(十六)[分布式搜索引擎篇] - DSL 查询及相关性算分的学习 (部分),SpringCloud,微服务,spring cloud,分布式,搜索引擎

全文检索查询的使用场景比较多, 我们生活中也经常使用, 如在淘宝上买鞋子买衣服等, 都是搜索某一个牌子的名称或者是物品的名称, 也就是说需要拿着词条去索引库中匹配, 因此参与搜索的字段也必须是可分词的 text 类型的字段; 通过这个例子可以得到全文检索查询的基本流程如下:

  • 对搜索的内容进行分词得到词条;
  • 根据词条去倒排索引库中匹配, 得到文档 id;
  • 根据文档 id 找到文档, 然后返回到页面中.

关于全文检索的查询主要包括 match / multi_match 两种, 一个是单字段查询, 一个是多字段查询, 多字段查询的意思就是任意一个字段符合条件就满足查询条件. 示例如下:

match:

GET /hotel/_search
{
  "query": {
    "match": {
      "all":"喜来登"
    }
  }
}

SpringCloud系列(十六)[分布式搜索引擎篇] - DSL 查询及相关性算分的学习 (部分),SpringCloud,微服务,spring cloud,分布式,搜索引擎

multi_match:

GET /hotel/_search
{
  "query": {
    "multi_match": {
      "query":"上海喜来登",
      "fields": ["name","business"]
    }
  }
}

SpringCloud系列(十六)[分布式搜索引擎篇] - DSL 查询及相关性算分的学习 (部分),SpringCloud,微服务,spring cloud,分布式,搜索引擎
这里需要注意: multi_match 是根据多个字段进行查询, 参与的字段越多, 查询的效率就会越低, 因此一般使用 match 查询即可.

1.3 精准查询

精准查询的使用场景也是挺多的, 如查询某个日期范围内的数据, 或者是精确查询某一个地区的数据;

  • term: 根据词条精确值进行查询, 如查询北京地区的喜来登酒店, 筛选出的数据就只有北京地区的喜来登;
  • range: 根据值得范围进行查询, 如查询 500 元以上的酒店数据.

term 查询:

GET /hotel/_search
{
  "query": {
    "term": {
      "city": {
        "value": "上海"
      }
    }
  }
}

SpringCloud系列(十六)[分布式搜索引擎篇] - DSL 查询及相关性算分的学习 (部分),SpringCloud,微服务,spring cloud,分布式,搜索引擎
这里需要注意: 词条必须是精确的, 不能是多个词语组成的短语, 如果是北京上海, 是搜索不到结果的, 如下所示:
SpringCloud系列(十六)[分布式搜索引擎篇] - DSL 查询及相关性算分的学习 (部分),SpringCloud,微服务,spring cloud,分布式,搜索引擎

range 查询:

GET /hotel/_search
{
  "query": {
    "range": {
      "price": {
        "gte": "2000",
        "lte":"5000"
      }
    }
  }
}

查询到的是 2000 元到 5000 元价格酒店;
SpringCloud系列(十六)[分布式搜索引擎篇] - DSL 查询及相关性算分的学习 (部分),SpringCloud,微服务,spring cloud,分布式,搜索引擎

1.4 地理坐标查询


出去游玩打车或者订酒店经常需要进行定位附近的快车及酒店, 地理坐标的查询就能实现这样的功能, 一种是根据地理坐标的经纬度进行查询, 如根据矩形范围进行查询:

GET /hotel/_search
{
  "query": {
    "geo_bounding_box": {
      "FIELD": {
        "top_left": { 
          "lat": 31.35786,
          "lon": 121.59324
        },
        "bottom_right": {
          "lat": 31.35493,
          "lon": 121.59838
        }
      }
    }
  }
}

这里首先要确定左上角的点的坐标及右下角的点的坐标, 比较复杂, 但是有一种简单的方式, 可以根据距离进行查询, 查询到指定中心点小于某个距离值的所有数据; 也就是说以我现在的位置为中心, 距离我某个距离的圆弧内都符合条件, 如下所示:

GET /hotel/_search
{
  "query": {
    "geo_distance": {
      "distance": "5km",
      "location": "39.94076,116.46099"
    }
  }
}

这里我查询的是以三里屯为中心点, 距离三里屯 5 km 所有的数据:
SpringCloud系列(十六)[分布式搜索引擎篇] - DSL 查询及相关性算分的学习 (部分),SpringCloud,微服务,spring cloud,分布式,搜索引擎

1.5 复合查询

  复合查询可以将其简单的查询组合起来, 实现更加复杂的搜索逻辑, 主要有以下两种:

  • function score: 算分函数查询, 通过控制文档相关性算分, 来控制文档的排名;
  • bool query: 布尔查询, 主要利用逻辑关系组合多个查询, 实现复杂的搜索逻辑.

1.5.1 相关性算分

  当我们使用 match 进行查询时, 文档结果会根据与搜索词条的关联度进行打分, 返回的结果也会按照分值的降序进行排序;   ElasticSearch 早起使用的打分算法是 TF-IDF 算法, 关于算法的公式如下:
SpringCloud系列(十六)[分布式搜索引擎篇] - DSL 查询及相关性算分的学习 (部分),SpringCloud,微服务,spring cloud,分布式,搜索引擎
但是 TF-IDF 算法有一个缺陷: 当词条的频率越来越高的时候, 文档的得分也会越来越高, 单个词条对文档的影响较大. 针对这样的问题, ElasticSearch 将打分算法改进为 BM25, BM25 会让单个词条的算分有一个上限, 曲线更加的平滑.公式如下:
SpringCloud系列(十六)[分布式搜索引擎篇] - DSL 查询及相关性算分的学习 (部分),SpringCloud,微服务,spring cloud,分布式,搜索引擎

1.5.2 语法

GET /hotel/_search
{
  "query": {
    "function_score": {
      "query": {
        "match": {
          "all": "北京"
        }
      },
      "functions": [
        {
          "filter": {
            "term": {
              "id": "1"
            }
          },
          "weight": 10
        }
      ],
      "boost_mode": "multiply"
    }
  }
}

SpringCloud系列(十六)[分布式搜索引擎篇] - DSL 查询及相关性算分的学习 (部分),SpringCloud,微服务,spring cloud,分布式,搜索引擎


如图所示, 可以看得出分数值是降序的, 具体的语法说明如下:
SpringCloud系列(十六)[分布式搜索引擎篇] - DSL 查询及相关性算分的学习 (部分),SpringCloud,微服务,spring cloud,分布式,搜索引擎
具体流程如下:

  • 根据原始条件查询搜索文档, 并且计算相关性算分, 也就是 query score (原始算分);
  • 根据过滤条件过滤掉不符合条件的文档;
  • 基于算分函数运算得到函数得分 (function score);
  • 将原始算分 (query score) 和 函数算分 (function score) 基于运算模式做运算, 得到相关性算分的最终结果.

例如: 给北京的喜来登排名靠前, 如下:
原始查询, 得分为 2.6944847;
SpringCloud系列(十六)[分布式搜索引擎篇] - DSL 查询及相关性算分的学习 (部分),SpringCloud,微服务,spring cloud,分布式,搜索引擎
添加算分函数后, 得分为 4.6944847, 如下:
SpringCloud系列(十六)[分布式搜索引擎篇] - DSL 查询及相关性算分的学习 (部分),SpringCloud,微服务,spring cloud,分布式,搜索引擎

1.5.3 布尔查询

SpringCloud系列(十六)[分布式搜索引擎篇] - DSL 查询及相关性算分的学习 (部分),SpringCloud,微服务,spring cloud,分布式,搜索引擎

  布尔查询的使用场景还是挺多的, 如上图在淘宝上搜索 阿迪达斯, 我们可以进行选择筛选, 可以根据鞋码 / 性别等; 因为每一个字段都是不同的, 查询的条件或者方式也不一样, 因此肯定是多个不同的查询, 那么要组合这些查询就用到了布尔查询;
 总之, 布尔查询也是一个或者多个字句的组合, 每一个字句都是一个子查询, 组合方式有:

  • must: 必须匹配每个子查询, 类似 “与”;
  • should: 选择性匹配子查询, 类似 “或”;
  • must_not: 必须不匹配, 不参与算分, 类似 “非”;
  • filter: 必须匹配, 不参与算分.

例子:

GET /hotel/_search
{
  "query": {
    "bool": {
      "must": [
        {"term": {"city": "北京"}}
      ],
      "should": [
        {"term": {"brand":"希尔顿"}},
        {"term": {"brand":"喜来登"}}
      ],
      "must_not": [
        {"range": {"price": {"lte": 1200} }}
      ],
      "filter": [
        {"range": {
          "score": {
            "gte": 47
          }
        }},
        {"geo_distance": {
          "distance": "50km",
          "location": {
            "lat": 39.91979,
            "lon": 116.41804
          }
        }}
      ]
    }
  }
}

代码解读:
SpringCloud系列(十六)[分布式搜索引擎篇] - DSL 查询及相关性算分的学习 (部分),SpringCloud,微服务,spring cloud,分布式,搜索引擎


这里需要注意的是: 搜索过程中, 参与打字的字段越多, 查询的性能就会越差劲, 因此多条件查询时, 需要注意以下两点:文章来源地址https://www.toymoban.com/news/detail-580205.html

  • 搜索框的关键字搜索是全文检索查询, 使用 must 查询参与算分;
  • 其他的过滤条件采用 filter 查询, 不参与算分.

② 搜索结果的处理

③ RestClient 查询文档

④ 案例

到了这里,关于SpringCloud系列(十六)[分布式搜索引擎篇] - DSL 查询及相关性算分的学习 (部分)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 分布式搜索引擎

    elasticsearch的查询依然是基于JSON风格的DSL来实现的。 Elasticsearch提供了基于JSON的DSL(Domain Specific Language)来定义查询。常见的查询类型包括: 查询所有 :查询出所有数据,一般测试用。例如:match_all 全文检索(full text)查询 :利用分词器对用户输入内容分词,然后去倒排索

    2024年02月10日
    浏览(42)
  • 【分布式搜索引擎02】

    elasticsearch的查询依然是基于JSON风格的DSL来实现的。 Elasticsearch提供了基于JSON的DSL(Domain Specific Language)来定义查询。常见的查询类型包括: 查询所有 :查询出所有数据,一般测试用。例如:match_all 全文检索(full text)查询 :利用分词器对用户输入内容分词,然后去倒排索

    2024年02月01日
    浏览(43)
  • 分布式搜索引擎--认识

    elasticsearch的作用 elasticsearch是一款非常强大的开源搜索引擎,具备非常多强大功能,可以帮助我们从海量数据中快速找到需要的内容 。 elasticsearch结合kibana、Logstash、Beats,也就是elastic stack(ELK)。被广泛应用在日志数据分析、实时监控等领域。 而elasticsearch是elastic stack的核

    2024年01月18日
    浏览(44)
  • 【分布式搜索引擎03】

    **聚合(aggregations)**可以让我们极其方便的实现对数据的统计、分析、运算。例如: 什么品牌的手机最受欢迎? 这些手机的平均价格、最高价格、最低价格? 这些手机每月的销售情况如何? 实现这些统计功能的比数据库的sql要方便的多,而且查询速度非常快,可以实现近

    2024年02月05日
    浏览(46)
  • ElasticSearch分布式搜索引擎

    KuangStudy ElasticSearch学习视频:狂神说ElasticSearch教程 1、官网 Elaticsearch ,简称为es,es是一个开源的 高扩展 的 分布式全文检索引擎 ,它可以近乎 实时的存储 、 检索数据; 本身扩展性很好,可以扩展到上百台服务器,处理PB级别(大数据时代)的数据。es也使用java开发并使用

    2024年02月16日
    浏览(47)
  • 分布式搜索引擎----elasticsearch

    目录 1、初识elasticsearch 1.1、什么是elasticsearch 1.2.ELK技术栈 2、正向索引和倒排索引 2.1、正向索引 2.2、倒排索引 2.3、正向索引和倒排索引的区别 3、elasticsearch中的概念理解 3.1、文档和字段 3.2、索引和映射 3.3、mysql与elasticsearch         elasticsearch是一款非常强大的开源搜索

    2024年02月11日
    浏览(54)
  • 【分布式搜索引擎es】

    elasticsearch最擅长的是 搜索 和 数据分析 。 查询文档 常见的查询类型包括: 查询所有 :查询出所有数据,一般测试用。例如:match_all 全文检索(full text)查询 :利用分词器对用户输入内容分词,然后去倒排索引库中匹配。例如: match_query multi_match_query 精确查询 :根据精确

    2024年02月10日
    浏览(48)
  • 分布式搜索引擎ES

    elasticsearch的作用 elasticsearch是一款非常强大的开源搜索引擎,具备非常多强大功能,可以帮助我们从海量数据中快速找到需要的内容 例如: 在GitHub搜索代码 在电商网站搜索商品 在百度搜索答案 ELK技术栈 elasticsearch结合kibana、Logstash、Beats,也就是elastic stack(ELK)。被广泛应

    2024年02月04日
    浏览(41)
  • 【分布式搜索引擎elasticsearch】

    什么是elasticsearch? 一个开源的分布式搜索引擎,可以用来实现搜索、日志统计、分析、系统监控等功能 什么是elastic stack(ELK)? 是以elasticsearch为核心的技术栈,包括beats、Logstash、kibana、elasticsearch elasticsearch结合kibana、Logstash、Beats,也就是elastic stack(ELK)。被广泛应用在

    2024年02月10日
    浏览(52)
  • 分布式搜索引擎ElasticSearch——搜索功能

    DSL查询分类 DSL官方文档 全文检索查询 精确查询 地理查询 复合查询 Function Score Query function score query Boolean Query 排序 分页 官方文档 高亮 快速入门 match,term,range,bool查询 排序和分页 高亮显示 就是在前面抽取的解析代码中进一步添加关于高亮的解析部分,因为highlight和so

    2024年02月01日
    浏览(54)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包