pytorch中的tensor实现数据降维以及通道数转换

这篇具有很好参考价值的文章主要介绍了pytorch中的tensor实现数据降维以及通道数转换。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

        首先导入torch包,利用torch.narrow()函数实现数据通道数转换,具体实例见下图

        利用torch.rand(5,6)随机生成一个5X6的二维矩阵,利用torch.narrow(x,dim,start,length)进行通道数转化,narrow()函数里第一个参数是你需要转换的原始数据,必须是tensor形式。第二个变量dim是你需要转换的具体维度。第三个变量为所选维度中的第几个通道为起点。第四个变量为保留的通道数个数。
    pytorch中核函数怎么将通道数压缩,pytorch,深度学习,人工智能

pytorch中核函数怎么将通道数压缩,pytorch,深度学习,人工智能      上例中torch.narrow(x,0,2,3),因x为5X6的二维tensor,由两个维度[0,1],0表示第一维,横向,1表示第二维,纵向;且第一维通道数为5,第二维通道数为6。narrow函数中dim=0,选择第一维;start=2表示从第一维的第二个通道开始,python中均是以0开始计数,即0.6467这一行向量为起始通道;length=3表示通道数为3,即从0.6467这一行向量向下保留3个通道,如下图。

pytorch中核函数怎么将通道数压缩,pytorch,深度学习,人工智能

 成功将第一维通道数减小至3。

如果在深度学习中图像处理中常遇到思维tensor,即x.shape=[9,3,256,256],3代表彩色图片RGB的三个通道数,如想实现降维操作,可将x的第二维的通道数3变为1,再使用x=torch.squeeze(x,dim=1)实现降维,降维后shape变为[9,256,256]

pytorch中核函数怎么将通道数压缩,pytorch,深度学习,人工智能

 pytorch中核函数怎么将通道数压缩,pytorch,深度学习,人工智能

 文章来源地址https://www.toymoban.com/news/detail-580629.html

 

到了这里,关于pytorch中的tensor实现数据降维以及通道数转换的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Pytorch查看tensor是否有梯度(值)以及开启梯度

    一. requires_grad 属性:查看是否记录梯度 结果如下: 二. requires_grad_ ()函数:调用函数设置记录梯度与否 函数:requires_grad_(requires_grad=True) 结果如下: 三. requires_grad属性参数,创建tensor时设置是否记录梯度 结果如下: 四. 查看模型的权重名称和参数值 五. 查看模型权重梯度值

    2024年02月03日
    浏览(45)
  • PIL,cv2读取类型及转换,以及PIL,numpy,tensor格式以及cuda,cpu的格式转换

    这里先列个表格方便理解清楚: cv2 PIL 读取 a=cv2.imread() a=Image.open() 读取类型 数组类型 PIL类型 读取颜色通道 BGR RGB(这里需要注意的是当图像格式为RGBA时,PIL读取的是RGBA) 读取尺寸排列 (H,W,C) (W,H,C) 显示图片 cv2.imshow(“a”, a) cv2.waitKey (0) a.show() 相互之间转换显示 Ima

    2024年02月03日
    浏览(41)
  • pytorch如何查看tensor和model在哪个GPU上以及指定GPU设备

    1. 查看tensor所在的设备: 2. 查看model所在的设备 3. Pytorch中将模型和张量加载到GPU的常用方法有两种。 方式1: 方式2: 4. 指定GPU代码 参考链接:PyTorch 中 选择指定的 GPU 注意需要将指定GPU代码放在程序段最开始的部位,如下图所示: 5.查看gpu个数

    2024年02月13日
    浏览(44)
  • 1.PyTorch数据结构Tensor常用操作

    从接口的角度来讲,对tensor的操作可分为两类: torch.function ,如 torch.save 等。 另一类是 tensor.function ,如 tensor.view 等。 为方便使用,对tensor的大部分操作同时支持这两类接口,如 torch.sum (torch.sum(a, b)) 与 tensor.sum (a.sum(b)) 功能等价。 而从存储的角度来讲,对tensor的操作又可

    2024年02月04日
    浏览(41)
  • Pytorch:将列表数据转不同数据类型的Tensor矩阵

            本文主要介绍pytorch中不同数据类型的Tensor矩阵,例如:float32、float64、int32、int64。并将创建好的列表数据转成不同数据类型的Tensor矩阵,最后进行:行复制的操作。 一、列表转Tensor,复制行和列向量 二、转Tensor矩阵中元素的数据类型 三、求个赞就行    

    2024年02月11日
    浏览(53)
  • Pytorch数据类型Tensor张量操作(操作比较全)

    本文只简单介绍pytorch中的对于张量的各种操作,主要列举介绍其大致用法和简单demo。后续更为详细的介绍会进行补充… 1.创建无初始化张量 torch.empty(3, 4) 创建未初始化内存的张量 2.创建随机张量 x = torch.rand(3, 4) 服从0~1间均匀分布 x = torch.randn(3, 4) 服从(0,1)的正态分布

    2024年02月10日
    浏览(47)
  • 【Pytorch】学习记录分享2——Tensor基础,数据类型,及其多种创建方式

    pytorch 官方文档 1. 创建 Creating Tensor: 标量、向量、矩阵、tensor 2. 三种方法可以创建张量,一是通过列表(list),二是通过元组(tuple),三是通过Numpy的数组(array),基本创建代码如下: 张量相关属性查看的基本操作,后期遇到的张量结构都比较复杂,难以用肉眼直接看出,因此

    2024年02月04日
    浏览(53)
  • pytorch一行实现:计算同一tensor矩阵内每行之间的余弦相似度

      余弦相似度的公式如下所示:   可以使用torch自带的余弦相似度计算函数(下面三种用哪一个都可以,效果是一样的):   该函数原文档在:torch官方文档    cosine_similarity中的参数要两个tensor数据,而我们的需求是求一个tensor内的行与行之间的余弦相似度。很显然

    2023年04月08日
    浏览(44)
  • pytorch代码实现之空间通道重组卷积SCConv

    空间通道重组卷积SCConv,全称Spatial and Channel Reconstruction Convolution,CPR2023年提出,可以即插即用,能够在减少参数的同时提升性能的模块。其核心思想是希望能够实现减少特征冗余从而提高算法的效率。一般压缩模型的方法分为三种,分别是network pruning, weight quantization, low-r

    2024年02月09日
    浏览(49)
  • 特征波长筛选算法有CARS,SPA,GA,MCUVE,光谱数据降维算法以及数据聚类算法PCA

    特征波长筛选算法有CARS,SPA,GA,MCUVE,光谱数据降维算法以及数据聚类算法PCA,KPCA,KNN,HC层次聚类降维,以及SOM数据聚类算法,都是直接替换数据就可以用,程序内有注释,直接替换光谱数据,以及实测值,就可以做特征波长筛选以及数据聚类,同时本人也承接光谱代分

    2024年01月20日
    浏览(41)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包