SPP、SPPF 、 SimSPPF 、 ASPP、 SPPCSPC详解

这篇具有很好参考价值的文章主要介绍了SPP、SPPF 、 SimSPPF 、 ASPP、 SPPCSPC详解。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

分享自:https://blog.csdn.net/weixin_43694096/article/details/126354660

1. 原理

1.1 SPP(Spatial Pyramid Pooling)

SPP 模块是何凯大神在2015年的论文《Spatial Pyramid Pooling in Deep Convolution Networks for Visual Recognition》中提出来的.

SPP全称为空间金字塔池化结构,主要是为了解决两个问题

    1. 有效避免了对图像区域的裁剪、缩放操作导致的图像失真等问题。
    1. 解决了卷积神经网络对图相关重复特征提取的问题,大大提高了产生候选框的速度,且节省了计算成本
      SPP、SPPF 、 SimSPPF 、 ASPP、 SPPCSPC详解,深度学习,面试,计算机视觉,pytorch,深度学习
      SPP、SPPF 、 SimSPPF 、 ASPP、 SPPCSPC详解,深度学习,面试,计算机视觉,pytorch,深度学习
class SPP(nn.Module):
    # Spatial Pyramid Pooling (SPP) layer https://arxiv.org/abs/1406.4729
    def __init__(self, c1, c2, k=(5, 9, 13)):
        super().__init__()
        c_ = c1 // 2  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
        self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])

    def forward(self, x):
        x = self.cv1(x)
        with warnings.catch_warnings():
            warnings.simplefilter('ignore')  # suppress torch 1.9.0 max_pool2d() warning
            return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))

1.2 SPPF (Spatial Pyramid Pooling - Fast)

这个是Yolov5作者基于SPP提出的,速度较SPP快很多(2.5倍),所以叫做SPP-Fast

SPP、SPPF 、 SimSPPF 、 ASPP、 SPPCSPC详解,深度学习,面试,计算机视觉,pytorch,深度学习

class SPPF(nn.Module):
    # Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher
    def __init__(self, c1, c2, k=5):  # equivalent to SPP(k=(5, 9, 13))
        super().__init__()
        c_ = c1 // 2  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_ * 4, c2, 1, 1)
        self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)

    def forward(self, x):
        x = self.cv1(x)
        with warnings.catch_warnings():
            warnings.simplefilter('ignore')  # suppress torch 1.9.0 max_pool2d() warning
            y1 = self.m(x)
            y2 = self.m(y1)
            return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1))

1.3 SimSPPF(Simplified SPPF)

美团YOLOv6提出的模块,感觉和SPPF只差了一个激活函数,简单测试了一下,单个ConvBNReLU速度比ConvBNSiLU18%
SPP、SPPF 、 SimSPPF 、 ASPP、 SPPCSPC详解,深度学习,面试,计算机视觉,pytorch,深度学习

class SimConv(nn.Module):
    '''Normal Conv with ReLU activation'''
    def __init__(self, in_channels, out_channels, kernel_size, stride, groups=1, bias=False):
        super().__init__()
        padding = kernel_size // 2
        self.conv = nn.Conv2d(
            in_channels,
            out_channels,
            kernel_size=kernel_size,
            stride=stride,
            padding=padding,
            groups=groups,
            bias=bias,
        )
        self.bn = nn.BatchNorm2d(out_channels)
        self.act = nn.ReLU()

    def forward(self, x):
        return self.act(self.bn(self.conv(x)))

    def forward_fuse(self, x):
        return self.act(self.conv(x))

class SimSPPF(nn.Module):
    '''Simplified SPPF with ReLU activation'''
    def __init__(self, in_channels, out_channels, kernel_size=5):
        super().__init__()
        c_ = in_channels // 2  # hidden channels
        self.cv1 = SimConv(in_channels, c_, 1, 1)
        self.cv2 = SimConv(c_ * 4, out_channels, 1, 1)
        self.m = nn.MaxPool2d(kernel_size=kernel_size, stride=1, padding=kernel_size // 2)

    def forward(self, x):
        x = self.cv1(x)
        with warnings.catch_warnings():
            warnings.simplefilter('ignore')
            y1 = self.m(x)
            y2 = self.m(y1)
            return self.cv2(torch.cat([x, y1, y2, self.m(y2)], 1))

1.4 ASPP (Atrous Spatial Pyramid Pooling)

受到SPP的启发,语义分割模型DeepLabv2中提出了ASPP模块(空洞空间金字塔池化),该模块使用具有不同采样率的多个并行空洞卷积·。为每个采样率提取的特征在单独的分支中进一步处理,并融合以生成最终的结果。该模块通过不同的空洞率构建不同的感受野的卷积核,用来获取多尺度物体信息,具体结构比较简单如下图所示:

SPP、SPPF 、 SimSPPF 、 ASPP、 SPPCSPC详解,深度学习,面试,计算机视觉,pytorch,深度学习
ASPP 是在DeepLab中提出来的,在后续的DeepLab版本中对其做了改进,如加入BN层,加入深度可分离卷积等,但基本的思路还是没变。

# without BN version
class ASPP(nn.Module):
    def __init__(self, in_channel=512, out_channel=256):
        super(ASPP, self).__init__()
        self.mean = nn.AdaptiveAvgPool2d((1, 1))  # (1,1)means ouput_dim
        self.conv = nn.Conv2d(in_channel,out_channel, 1, 1)
        self.atrous_block1 = nn.Conv2d(in_channel, out_channel, 1, 1)
        self.atrous_block6 = nn.Conv2d(in_channel, out_channel, 3, 1, padding=6, dilation=6)
        self.atrous_block12 = nn.Conv2d(in_channel, out_channel, 3, 1, padding=12, dilation=12)
        self.atrous_block18 = nn.Conv2d(in_channel, out_channel, 3, 1, padding=18, dilation=18)
        self.conv_1x1_output = nn.Conv2d(out_channel * 5, out_channel, 1, 1)

    def forward(self, x):
        size = x.shape[2:]

        image_features = self.mean(x)
        image_features = self.conv(image_features)
        image_features = F.upsample(image_features, size=size, mode='bilinear')

        atrous_block1 = self.atrous_block1(x)
        atrous_block6 = self.atrous_block6(x)
        atrous_block12 = self.atrous_block12(x)
        atrous_block18 = self.atrous_block18(x)

        net = self.conv_1x1_output(torch.cat([image_features, atrous_block1, atrous_block6,
                                              atrous_block12, atrous_block18], dim=1))
        return net

1.5 RFB(Receptive Field Block)

RFB模块是在《ECCV2018:Receptive Field Block Net for Accurate and Fast Object Detection》一文中提出的,该文的出发点是模拟人类视觉的感受野从而加强网络的特征提取能力,在结构RFV借鉴了Inception的思想,主要是在Inception的基础上加入了空洞卷积,从而有效增大了感受野。

SPP、SPPF 、 SimSPPF 、 ASPP、 SPPCSPC详解,深度学习,面试,计算机视觉,pytorch,深度学习
SPP、SPPF 、 SimSPPF 、 ASPP、 SPPCSPC详解,深度学习,面试,计算机视觉,pytorch,深度学习
RFBRFB-s的架构,RFB-s用于浅层人类视网膜主题图中模拟较小的pRF,使用具有较小内核的更多分支。

class BasicConv(nn.Module):

    def __init__(self, in_planes, out_planes, kernel_size, stride=1, padding=0, dilation=1, groups=1, relu=True, bn=True):
        super(BasicConv, self).__init__()
        self.out_channels = out_planes
        if bn:
            self.conv = nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=False)
            self.bn = nn.BatchNorm2d(out_planes, eps=1e-5, momentum=0.01, affine=True)
            self.relu = nn.ReLU(inplace=True) if relu else None
        else:
            self.conv = nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=True)
            self.bn = None
            self.relu = nn.ReLU(inplace=True) if relu else None

    def forward(self, x):
        x = self.conv(x)
        if self.bn is not None:
            x = self.bn(x)
        if self.relu is not None:
            x = self.relu(x)
        return x


class BasicRFB(nn.Module):

    def __init__(self, in_planes, out_planes, stride=1, scale=0.1, map_reduce=8, vision=1, groups=1):
        super(BasicRFB, self).__init__()
        self.scale = scale
        self.out_channels = out_planes
        inter_planes = in_planes // map_reduce

        self.branch0 = nn.Sequential(
            BasicConv(in_planes, inter_planes, kernel_size=1, stride=1, groups=groups, relu=False),
            BasicConv(inter_planes, 2 * inter_planes, kernel_size=(3, 3), stride=stride, padding=(1, 1), groups=groups),
            BasicConv(2 * inter_planes, 2 * inter_planes, kernel_size=3, stride=1, padding=vision + 1, dilation=vision, relu=False, groups=groups)
        )
        self.branch1 = nn.Sequential(
            BasicConv(in_planes, inter_planes, kernel_size=1, stride=1, groups=groups, relu=False),
            BasicConv(inter_planes, 2 * inter_planes, kernel_size=(3, 3), stride=stride, padding=(1, 1), groups=groups),
            BasicConv(2 * inter_planes, 2 * inter_planes, kernel_size=3, stride=1, padding=vision + 2, dilation=vision + 2, relu=False, groups=groups)
        )
        self.branch2 = nn.Sequential(
            BasicConv(in_planes, inter_planes, kernel_size=1, stride=1, groups=groups, relu=False),
            BasicConv(inter_planes, (inter_planes // 2) * 3, kernel_size=3, stride=1, padding=1, groups=groups),
            BasicConv((inter_planes // 2) * 3, 2 * inter_planes, kernel_size=3, stride=stride, padding=1, groups=groups),
            BasicConv(2 * inter_planes, 2 * inter_planes, kernel_size=3, stride=1, padding=vision + 4, dilation=vision + 4, relu=False, groups=groups)
        )

        self.ConvLinear = BasicConv(6 * inter_planes, out_planes, kernel_size=1, stride=1, relu=False)
        self.shortcut = BasicConv(in_planes, out_planes, kernel_size=1, stride=stride, relu=False)
        self.relu = nn.ReLU(inplace=False)

    def forward(self, x):
        x0 = self.branch0(x)
        x1 = self.branch1(x)
        x2 = self.branch2(x)

        out = torch.cat((x0, x1, x2), 1)
        out = self.ConvLinear(out)
        short = self.shortcut(x)
        out = out * self.scale + short
        out = self.relu(out)

        return out


1.6 SPPCSPC

该模块是YOLOv7中使用的SPP结构,表现优于SPPF,但参数量和计算量提升了很多。
SPP、SPPF 、 SimSPPF 、 ASPP、 SPPCSPC详解,深度学习,面试,计算机视觉,pytorch,深度学习

class SPPCSPC(nn.Module):
    # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
    def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5, k=(5, 9, 13)):
        super(SPPCSPC, self).__init__()
        c_ = int(2 * c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c1, c_, 1, 1)
        self.cv3 = Conv(c_, c_, 3, 1)
        self.cv4 = Conv(c_, c_, 1, 1)
        self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
        self.cv5 = Conv(4 * c_, c_, 1, 1)
        self.cv6 = Conv(c_, c_, 3, 1)
        self.cv7 = Conv(2 * c_, c2, 1, 1)

    def forward(self, x):
        x1 = self.cv4(self.cv3(self.cv1(x)))
        y1 = self.cv6(self.cv5(torch.cat([x1] + [m(x1) for m in self.m], 1)))
        y2 = self.cv2(x)
        return self.cv7(torch.cat((y1, y2), dim=1))
#分组SPPCSPC 分组后参数量和计算量与原本差距不大,不知道效果怎么样
class SPPCSPC_group(nn.Module):
    def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5, k=(5, 9, 13)):
        super(SPPCSPC_group, self).__init__()
        c_ = int(2 * c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1, g=4)
        self.cv2 = Conv(c1, c_, 1, 1, g=4)
        self.cv3 = Conv(c_, c_, 3, 1, g=4)
        self.cv4 = Conv(c_, c_, 1, 1, g=4)
        self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
        self.cv5 = Conv(4 * c_, c_, 1, 1, g=4)
        self.cv6 = Conv(c_, c_, 3, 1, g=4)
        self.cv7 = Conv(2 * c_, c2, 1, 1, g=4)

    def forward(self, x):
        x1 = self.cv4(self.cv3(self.cv1(x)))
        y1 = self.cv6(self.cv5(torch.cat([x1] + [m(x1) for m in self.m], 1)))
        y2 = self.cv2(x)
        return self.cv7(torch.cat((y1, y2), dim=1))

1.7 SPPFCSPC

借鉴了SPPF的思想将SPPCSPC优化了一下,得到了SPPFCSPC,在保持感受野不变的情况下获得速度提升;

目前这个结构被YOLOv6 3.0版本使用了,效果很不错,大家可以看YOLOv6 3.0的论文,里面有详细的实验结果。

SPP、SPPF 、 SimSPPF 、 ASPP、 SPPCSPC详解,深度学习,面试,计算机视觉,pytorch,深度学习

class SPPFCSPC(nn.Module):
    
    def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5, k=5):
        super(SPPFCSPC, self).__init__()
        c_ = int(2 * c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c1, c_, 1, 1)
        self.cv3 = Conv(c_, c_, 3, 1)
        self.cv4 = Conv(c_, c_, 1, 1)
        self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
        self.cv5 = Conv(4 * c_, c_, 1, 1)
        self.cv6 = Conv(c_, c_, 3, 1)
        self.cv7 = Conv(2 * c_, c2, 1, 1)

    def forward(self, x):
        x1 = self.cv4(self.cv3(self.cv1(x)))
        x2 = self.m(x1)
        x3 = self.m(x2)
        y1 = self.cv6(self.cv5(torch.cat((x1,x2,x3, self.m(x3)),1)))
        y2 = self.cv2(x)
        return self.cv7(torch.cat((y1, y2), dim=1))

2. 参数量对比

这里以yolov5s.yaml中使用各个模型替换SPP模块

SPP、SPPF 、 SimSPPF 、 ASPP、 SPPCSPC详解,深度学习,面试,计算机视觉,pytorch,深度学习

3. 改进方式

  • (1) : 各个代码放入common.py
  • (2): yolo.py中加入类名
  • (3): 修改配置文件

yolov5配置文件如下:

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license

# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 9
   # [-1, 1, ASPP, [512]],  # 9
   # [-1, 1, SPP, [1024]],
   # [-1, 1, SimSPPF, [1024, 5]],
   # [-1, 1, BasicRFB, [1024]],
   # [-1, 1, SPPCSPC, [1024]],
   # [-1, 1, SPPFCSPC, [1024, 5]], # 🍀
  ]

4 Issue

Q Why use SPPCPC instead of SPPFCSPC
yolov5’s SPPF is much faster than SPP
why not try to replace SPPCSPC with SPPFCSPC:
SPP、SPPF 、 SimSPPF 、 ASPP、 SPPCSPC详解,深度学习,面试,计算机视觉,pytorch,深度学习

A: Max pooling uses very few compution,if you programing well, above one could run three max pool layers in parallel, while below one must process thress max pool layers sequentially
By the way,you could replace SPPCSPC by SPPFCSPC at inference time if your hardware is fridndly to SPPFCSPC文章来源地址https://www.toymoban.com/news/detail-580970.html

到了这里,关于SPP、SPPF 、 SimSPPF 、 ASPP、 SPPCSPC详解的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 深度学习基本理论下篇:(梯度下降/卷积/池化/归一化/AlexNet/归一化/Dropout/卷积核)、深度学习面试

    深度学习面试必备 1:(MLP/激活函数/softmax/损失函数/梯度/梯度下降/学习率/反向传播/深度学习面试 深度学习面试必备 2:(梯度下降/卷积/池化/归一化/AlexNet/归一化/Dropout/卷积核/深度学习面试 深度学习面试必备 3 :物体检测(Anchor base/NMS/softmax/损失函数/BCE/CE/zip) Momentum、

    2024年02月12日
    浏览(52)
  • 深度学习面试八股文(2023.9.06持续更新)

    一、优化器 1、SGD是什么? 批梯度下降(Batch gradient descent):遍历全部数据集算一次损失函数,计算量开销大,计算速度慢,不支持在线学习。 随机梯度下降(Stochastic gradient descent,SGD) 每次随机选择一个数据计算损失函数,求梯度并更新参数,计算速度快,但收敛性能可

    2024年02月09日
    浏览(42)
  • 算法面试-深度学习基础面试题整理-AIGC相关(2023.9.01开始,持续更新...)

    1、stable diffusion和GAN哪个好?为什么 ? Stable diffusion是一种基于随机微分方程的生成方法,它通过逐步增加噪声来扰动原始图像,直到完全随机化。然后,它通过逐步减少噪声来恢复图像,同时使用一个神经网络来预测下一步的噪声分布。Stable Diffusion的优点是可以在连续的潜

    2024年02月10日
    浏览(48)
  • 【深度学习】详解 MoCo

    目录 摘要 一、引言 二、相关工作 三、方法 3.1 Contrastive Learning as Dictionary Look-up 3.2 Momentum Contrast 3.3 Pretext Task 四、实验 4.1 Linear Classification Protocol 总结 ☆ 实现 参考资料 Title :Momentum Contrast for Unsupervised Visual Representation Learning Paper :https://arxiv.org/pdf/1911.05722.pdf Github :h

    2024年02月03日
    浏览(55)
  • 【深度学习】优化器详解

    深度学习模型通过引入损失函数,用来计算目标预测的错误程度。根据损失函数计算得到的误差结果,需要对模型参数(即权重和偏差)进行很小的更改,以期减少预测错误。但问题是如何知道何时应更改参数,如果要更改参数,应更改多少?这就是引入优化器的时候了。简

    2024年02月06日
    浏览(26)
  • 【深度学习】详解 ViLT

    目录 摘要 一、引言 二、背景 2.1 视觉和语言模型的分类法 2.2 模态交互模式 2.3 视觉嵌入方案 2.3.1 区域特征 2.3.2 网格特征 2.3.3 图像块投影  三、视觉和语言 Transformer  3.1 模型概述 3.2 预训练目标   3.2.1 图像文本匹配 3.2.2 掩码语言建模 3.2.3 全词掩码 3.4 图像扩增 四、实验

    2024年02月12日
    浏览(23)
  • 【深度学习】详解 MAE

    目录 摘要 一、引言 二、相关工作 三、方法 四、ImageNet 实验 4.1 主要属性 4.2 与先前结果的对比 4.3 部分微调 五、迁移学习实验 六、讨论与结论  七、核心代码 Title :Masked Autoencoders Are Scalable Vision Learners Paper :https://arxiv.org/abs/2111.06377 Github :https://github.com/facebookresearch/ma

    2023年04月08日
    浏览(29)
  • 【深度学习】详解 BEiT

    目录 摘要  一、引言 二、方法 2.1 图像表示 2.1.1 图像 patch 2.1.2 视觉 token 2.2 主干网络:图像 Transformer 2.3 预训练 BEiT:掩码图像建模 2.4 从变分自动编码器的角度来看 2.5 预训练设置  2.6 在下游视觉任务微调 BEiT 三、实验 3.1 图像分类 3.2 语义分割 3.3 消融实验 四、相关工作

    2023年04月16日
    浏览(20)
  • 【深度学习】损失函数详解

    在机器学习中,损失函数是代价函数的一部分,而代价函数则是目标函数的一种类型。 损失函数(Loss Function): 用于定义单个训练样本与真实值之间的误差; 代价函数(Cost Function): 用于定义单个批次/整个训练集样本与真实值之间的误差; 目标函数(Objective Function): 泛指任意可

    2024年02月02日
    浏览(43)
  • 【深度学习】ResNet网络详解

    参考 ResNet论文: https://arxiv.org/abs/1512.03385 本文主要参考视频:https://www.bilibili.com/video/BV1T7411T7wa https://www.bilibili.com/video/BV14E411H7Uw 结构概况 ResNet的网络结构图如图所示: 这是ResNet不同层数的网络 结构图。 可以看到,结构大差不差。不论是18层、34层、50层、还是101层、152层。

    2024年01月16日
    浏览(42)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包