【数论】扩展欧几里得算法(EXTENDED-EUCLID)

这篇具有很好参考价值的文章主要介绍了【数论】扩展欧几里得算法(EXTENDED-EUCLID)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

本文整理梳理了一些有关扩欧算法的内容,力求深入浅出便于理解,对一些作者在初次接触此算法时的不解(比如一些不是很好看出来的“易得”“显然”hh)通过数学形式呈现与推导。本文涉及的数学推导非常简单。代码均采用C++。

限于作者能力有限可能有些地方表述不清,请读者多多包含!

【预备知识】

1.基础数论概念(整除、质数合数、gcd/lcm…或者说你已经懂了辗转相除法是怎么用)

2.递归、子函数

就让我们从原本的欧几里得算法开始。

【欧几里得算法】(EUCLID 即辗转相除法)
//a,b均为任意非负整数且不同时为零

int gcd(int a,int b)
{
if(b==0) return a;
else return gcd(b,a%b); 
}

通过此可以求出a,b的最大公约数。

【扩展欧几里得算法】

就是欧几里得算法的推广,用于计算满足d=gcd(a,b)=ax+by的整系数x和y。

贝祖定理
若a,b是整数,设d=gcd(a,b), 那么对于任意的整数x、y, d|ax+by,   (p|q 表示p整除q)
特别地,一定存在整数x,y,使ax+by=d成立。

【应用1】求一元二次线性方程的整数解(ax+by=c)

 [ 思路 ]文章来源地址https://www.toymoban.com/news/detail-581862.html

到了这里,关于【数论】扩展欧几里得算法(EXTENDED-EUCLID)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Exgcd(拓展欧几里得算法)的初步理解

    若a,b是整数,且 gcd(a,b)=d ,那么对于任意的整数x,y,ax+by都一定是d的倍数,特别地,一定存在整数x,y,使ax+by=d成立。它的一个重要推论是:a,b互质的充分必要条件是存在整数x,y使ax+by=1. 针对于一次不定方程 ax+by=c 进行求解,利用以上的裴蜀定理可以进行求解,当然要满足 gcd(a,b)|

    2024年02月16日
    浏览(33)
  • 一文看懂什么是欧几里得算法!多图演示辗转相除算法究竟是什么!为什么要这样开展!多图预警!

    ps:全文图片均为手绘,如果有不标准的地方还望谅解,之后会慢慢熟悉画图工具的,感谢感谢!!! 欧几里得算法 又称为 辗转相除法 ,是指用于计算两个非负整数a,b的最大 公约数 。 两个整数的最大公约数是指能够同时整除它们的最大的正整数。 辗转相除法能够实现效

    2024年02月02日
    浏览(47)
  • 快乐地谈谈:关于RSA算法中求私钥d的欧几里得方法(辗转相除法)考试向的欸

    关于RSA算法本身,就提及一下,它是属于非对称密码体制. 基本的加密方式就如下图所示: c为加密后的密文,m为加密前的明文 其中一般会给出公开密钥n、e的值,这样根据规则,便可以实现加密过程。而题目往往需要进行解密,那么就需要 先求解出p、q,随后再求解出私钥

    2024年02月04日
    浏览(38)
  • Python欧几里得距离变换

    edt ,即 Euclidean distance transform. ,欧氏距离变换。对于一个二值矩阵 A A A ,元素 a ∈ A ain A a ∈ A ,则 edt ⁡ ( a ) operatorname{edt}(a) edt ( a ) 为 a a a 到矩阵中0元素的最短距离。假设现有一矩阵 A = [ 0 1 1 1 1 0 0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 1 1 0 0 ] A = begin{bmatrix} 01111\\\\ 00111\\\\ 01111\\\\ 01110\\\\

    2024年02月06日
    浏览(39)
  • 【非欧几里得域信号的信号处理】使用经典信号处理和图信号处理在一维和二维欧几里得域信号上应用低通滤波器研究(Matlab代码实现)

     💥💥💞💞 欢迎来到本博客 ❤️❤️💥💥 🏆博主优势: 🌞🌞🌞 博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️ 座右铭: 行百里者,半于九十。 📋📋📋 本文目录如下: 🎁🎁🎁 目录 💥1 概述 📚2 运行结果 2.1 算例1 2.2 算例2 2.3 算例3  2.4 算例4 

    2024年02月13日
    浏览(65)
  • 机器学习中的数学——距离定义(一):欧几里得距离(Euclidean Distance)

    分类目录:《机器学习中的数学》总目录 相关文章: · 距离定义:基础知识 · 距离定义(一):欧几里得距离(Euclidean Distance) · 距离定义(二):曼哈顿距离(Manhattan Distance) · 距离定义(三):闵可夫斯基距离(Minkowski Distance) · 距离定义(四):切比雪夫距离(

    2023年04月11日
    浏览(36)
  • 【抽象代数】素理想、极大理想、唯一析因环、主理想整环、欧几里得环

    设 R R R 是一个环, I I I 是 R R R 的理想,若 a b ∈ I ⇒ a ∈ I abin I Rightarrow a in I a b ∈ I ⇒ a ∈ I 或 b ∈ I b in I b ∈ I ,则称 I I I 是素理想。 例: 整数环 p p p (由元素p生成的主理想), 若p是素数,且 a b ∈   p ab in p a b ∈   p ,则 p ∣ a b p | ab p ∣ a b , p ∣ a 或 p ∣

    2024年02月09日
    浏览(52)
  • 算法基础-数学知识-欧拉函数、快速幂、扩展欧几里德、中国剩余定理

    互质就是两个数的最大公因数只有1,体现到代码里面就是 a和b互质,则b mod a = 1 mod a (目前我不是很理解,但是可以这样理解:a和b的最大公因数是1,即1作为除数和b作为除数时,对于被除数a来说余数是一样的,即1/a的余数和b/a是一样的,即 b mod a = 1 mod a ) 欧拉函数的作用是

    2024年02月09日
    浏览(43)
  • 数论——中国剩余定理、扩展中国剩余定理 学习笔记

    中国剩余定理(Chinese Remainder Theorem,CRT) 求解如下形式的一元线性同余方程组(其中 (m) 两两互质): $left{begin{matrix}x equiv a_1 pmod {m_1} \\\\x equiv a_2 pmod {m_2} \\\\ dots \\\\x equiv a_k pmod {m_k}end{matrix}right.$ 计算所有模数的积 (M = prod m_i) ; 对于第 (i) 个方程: 计算: (M_i

    2024年02月08日
    浏览(38)
  • 算法之数论

    原理 ​ 计算a的b次幂,我们首先会想到的是用一个循环,每次乘以一个a,乘b次,这种情况下所需的时间复杂度为O(b)。而快速幂算法则是利用倍增思想进行迭代求解,可以将时间复杂度降低到O(logb)。 分为两种情况: 当b为偶数时: a b = a b 2 × a b 2 = ( a 2 ) b 2 a^b=a^{frac{b}{2}}

    2024年02月21日
    浏览(33)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包