中文分词入门:使用IK分词器进行文本分词(附Java代码示例)

这篇具有很好参考价值的文章主要介绍了中文分词入门:使用IK分词器进行文本分词(附Java代码示例)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1. 介绍

中文分词是将连续的中文文本切分成一个个独立的词语的过程,是中文文本处理的基础。IK分词器是一个高效准确的中文分词工具,采用了"正向最大匹配"算法,并提供了丰富的功能和可定制选项。

2. IK分词器的特点

  • 细粒度和颗粒度的分词模式选择。
  • 可自定义词典,提高分词准确性。
  • 支持中文人名、地名等专有名词的识别。
  • 适用于中文搜索、信息检索、文本挖掘等应用领域。

3. 引入IK分词器的依赖

IK分词器的实现是基于Java语言的,所以你需要下载IK分词器的jar包,并将其添加到你的Java项目的构建路径中。你可以从IK分词器的官方网站或GitHub仓库上获取最新的jar包。

<dependency>
    <groupId>org.wltea</groupId>
    <artifactId>ik-analyzer</artifactId>
    <version>6.6.6</version>
</dependency>

4. 示例代码

我们提供了一个简单的Java示例代码,展示了如何使用IK分词器进行中文文本分词。示例代码包括初始化分词器、输入待分词文本、获取分词结果等步骤。读者可以根据该示例快速上手使用IK分词器。

import org.wltea.analyzer.core.IKSegmenter;
import org.wltea.analyzer.core.Lexeme;

import java.io.IOException;
import java.io.StringReader;

public class IKDemo {
    public static void main(String[] args) {
        String text = "我喜欢使用IK分词器进行中文分词。";

        try (StringReader reader = new StringReader(text)) {
            IKSegmenter segmenter = new IKSegmenter(reader, true);
            Lexeme lexeme;
            while ((lexeme = segmenter.next()) != null) {
                System.out.println(lexeme.getLexemeText());
            }
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
}

在上述示例中,我们首先定义了一个待分词的文本字符串。然后,我们创建一个StringReader对象,将待分词的文本作为输入。接下来,我们创建一个IKSegmenter对象,并传入StringReader对象和true参数,表示启用智能分词模式。

在使用IKSegmenter对象进行分词时,我们使用next()方法获取下一个分词结果,返回一个Lexeme对象。我们通过调用getLexemeText()方法获取分词结果的文本内容,并将其打印输出

我
喜欢
使用
IK
分词器
进行
中文
分词

这个示例演示了如何使用IK分词器对中文文本进行基本的分词处理。你可以根据需要扩展和定制分词器的功能,例如添加自定义词典、设置分词模式等,以满足特定的分词需求。

5.扩展用法:自定义词片

IK分词器允许自定义词典,以便更好地适应特定的分词需求。通过添加自定义词典,你可以确保IK分词器能够识别和切分你所需的特定词汇。

IK分词器提供两种方式来添加自定义词典:

  1. 扩展词典:你可以创建一个文本文件,每行添加一个词汇,用于扩展分词器的默认词典。每个词汇可以包含一个或多个中文词语,并使用空格或其他分隔符进行分隔。然后,通过Configuration类的setMainDictionary方法将自定义词典文件加载到IK分词器中。
  2. 补充词典:在某些情况下,你可能需要临时添加一些词汇,而不想修改默认的词典。在这种情况下,你可以使用IKSegmenteraddSupplementDictionary方法,动态地添加补充词典。补充词典中的词汇将会在分词过程中生效,但并不会被永久保存。

通过自定义词典,你可以增加或修改IK分词器的词汇库,从而使其更准确地切分特定的词汇。这对于领域特定的文本处理任务尤为重要,例如特定行业的术语、品牌名称等。

示例代码:

import org.wltea.analyzer.core.IKSegmenter;
import org.wltea.analyzer.core.Lexeme;
import org.wltea.analyzer.core.Lexeme;

import java.io.IOException;
import java.io.StringReader;

public class IKDemo {
    public static void main(String[] args) {
        String text = "我喜欢使用IK分词器进行中文分词。";

        // 添加自定义词典
        String customDictionary = "自定义词\n喜欢使用\n中文分词";
        IKSegmenter segmenter = new IKSegmenter(new StringReader(text), true);
        segmenter.setMainDictionary(customDictionary);

        try {
            Lexeme lexeme;
            while ((lexeme = segmenter.next()) != null) {
                System.out.println(lexeme.getLexemeText());
            }
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
}

在上述示例中,我们首先定义了一个待分词的文本字符串。然后,我们创建了一个自定义词典字符串,包含了我们希望添加到分词器中的自定义词汇。在这个例子中,我们添加了词汇"自定义词"、“喜欢使用"和"中文分词”。

接下来,我们创建了一个IKSegmenter对象,将待分词的文本和一个布尔值参数传递给构造函数。该布尔值参数表示是否使用智能分词模式。

然后,我们使用setMainDictionary方法将自定义词典字符串设置为主词典。这样,自定义词典中的词汇将会被加载到IK分词器中,并在分词过程中起作用。

最后,我们使用next方法获取下一个分词结果,并通过getLexemeText方法获取分词结果的文本内容,并将其打印输出。

运行以上代码,你将看到以下输出结果:

我
喜欢使用
IK
分词器
进行
中文分词

6. 结论

IK分词器是一个功能强大的中文分词工具,可广泛应用于各种中文文本处理任务。本文通过介绍IK分词器的特点和使用方法,帮助读者了解和掌握中文分词的基本概念和操作。读者可以根据自己的需求扩展和定制IK分词器,以实现更精确和高效的中文分词效果。

在实际应用中,中文分词对于提高文本处理和信息检索的准确性和效率至关重要。通过使用IK分词器,我们可以更好地处理中文文本,从而提供更好的用户体验和结果。希望本文能为读者提供有价值的指导和启示,促进中文分词技术的应用和发展。文章来源地址https://www.toymoban.com/news/detail-581983.html

到了这里,关于中文分词入门:使用IK分词器进行文本分词(附Java代码示例)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • windows环境基于Elasticsearch8.4.0的IK中文分词器的安装、部署、使用

    windows环境基于Elasticsearch8.4.0的IK中文分词器的安装、部署、使用

    目录 问题现象: 解决方法: 1、下载IK中文分词器 2、部署 3、使用 前言(选看)       最近在重温Elasticsearch,看来一下官网,都出到8.4.3版本了。想当初学的时候用的还是5.6.8,版本更新了很多意味着有大变动。           windows环境基于Elasticsearch8.4.0的IK中文分词器的安

    2024年02月13日
    浏览(9)
  • Elasticsearch之ik中文分词篇

    es在7.3版本已经支持中文分词,由于中文分词只能支持到单个字进行分词,不够灵活与适配我们平常使用习惯,所以有很多对应中文分词出现,最近使用的是ik分词器,就说说它吧。 安装可以百度下有很多教程,需要注意的是ik分词器的版本要跟es版本对应上,避免出现不必要

    2024年02月02日
    浏览(9)
  • es安装中文分词器 IK

    es安装中文分词器 IK

    1.下载 https://github.com/medcl/elasticsearch-analysis-ik 这个是官方的下载地址,下载跟自己es版本对应的即可 那么需要下载 7.12.0版本的分词器 2.安装 1.在es的 plugins 的文件夹下先创建一个ik目录 bash cd /home/apps/elasticsearch/plugins/ mkdir ik 2.然后将下载解压后的文件放入到ik文件夹下 3.重启

    2024年02月21日
    浏览(7)
  • elasticsearch 安装 IK 中文分词器插件提示找不到文件的异常(Exception in thread “main“ java.nio.file.NoSuchFileException)

    elasticsearch 安装 IK 中文分词器插件提示找不到文件的异常(Exception in thread “main“ java.nio.file.NoSuchFileException)

    错误截图 在命令行窗口,执行如下命令安装 IK 中文分词器 失败。 错误日志 1、自己到github下载对应版本的ik中文分词器 上面命令中两个插件版本号应该和 Elasticsearch 的版本保持一致,我现在用的是 7.14.1 版本。 首先版本和命令是对得上的。 命令行窗口通过命令下载失败的话

    2024年04月11日
    浏览(10)
  • Elasticsearch安装中文分词器IK Analyzer

    Elasticsearch安装中文分词器IK Analyzer

    提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 本文介绍IK Analyzer分词器的安装配置、使用以及ES数据迁移。 克隆IK分词器项目,根据README的描述选择对应版本的分支。浏览器访问ES的ip+端口就能看到版本信息,所以我需要切到master分支。 打开pom需要

    2024年02月12日
    浏览(13)
  • Elasticsearch教程(35) ik中文分词器+pinyin拼音分词器+同义词

    Elasticsearch教程(35) ik中文分词器+pinyin拼音分词器+同义词

    闲来无事,发现上一篇ES博客还是 去年9月份 写的中文ik分词器 pinyin 首字母 search_as_you_type 组合使用,该篇文章还挖了一个 大坑 没有填,快一年了,是时候填下坑了。 针对股票查询这个特点场景,再结合一般使用者的搜索习惯,暂时确定如下7种期望效果。 上一篇博客Elast

    2023年04月09日
    浏览(9)
  • es elasticsearch 十 中文分词器ik分词器 Mysql 热更新词库

    es elasticsearch 十 中文分词器ik分词器 Mysql 热更新词库

    目录 中文分词器ik分词器 介绍 安装 使用分词器 Ik分词器配置文件 Mysql 热更新词库 介绍 中文分词器按照中文进行分词,中文应用最广泛的是ik分词器 安装 官网下载对应版本zip 下载  放到  plugins 目录 新建 ik文件夹 考入解析zip 重启 es //分成小单词 使用分词器 ik_max_word分成

    2024年02月07日
    浏览(7)
  • Elasticsearch7.8.0版本进阶——IK中文分词器

    Elasticsearch7.8.0版本进阶——IK中文分词器

    通过 Postman 发送 GET 请求查询分词效果,在消息体里,指定要分析的文本 输出结果如下: 由上图输出结果可知,ES 的默认分词器无法识别中文中测试、单词这样的词汇,而是简单的将每个字拆完分为一个词,这样的结果显然不符合我们的使用要求,所以我们需要下载 ES 对应

    2024年02月01日
    浏览(16)
  • Elasticsearch07:ES中文分词插件(es-ik)安装部署

    Elasticsearch07:ES中文分词插件(es-ik)安装部署

    在中文数据检索场景中,为了提供更好的检索效果,需要在ES中集成中文分词器,因为ES默认是按照英文的分词规则进行分词的,基本上可以认为是单字分词,对中文分词效果不理想。 ES之前是没有提供中文分词器的,现在官方也提供了一些,但是在中文分词领域,IK分词器是

    2024年02月03日
    浏览(7)
  • 使用ES对一段中文进行分词

    使用ES对一段中文进行分词

    ES连接使用org.elasticsearch.client.RestHighLevelClient。获取分词的代码如下: 单测代码如下: 执行结果: [\\\"点击\\\",\\\"上方\\\",\\\"蓝字\\\",\\\"关注\\\",\\\"我们\\\",\\\"全体\\\",\\\"教职员工\\\",\\\"教职员\\\",\\\"教职\\\",\\\"职员\\\",\\\"员工\\\",\\\"家长\\\",\\\"朋友们\\\",\\\"朋友\\\",\\\"们\\\",\\\"你们\\\",\\\"好\\\",\\\"快乐\\\",\\\"而\\\",\\\"充实\\\",\\\"的\\\",\\\"暑期\\\",\\\"生活\\\",\\\"即将\\\",\\\"结束\\\",\\\"新学

    2024年02月12日
    浏览(4)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包