【搜索引擎】提高Apache Solr 性能

这篇具有很好参考价值的文章主要介绍了【搜索引擎】提高Apache Solr 性能。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

这是一个关于我们如何设法克服搜索和相关性堆栈的稳定性和性能问题的简短故事。

语境


在过去的 10 个月里,我很高兴与个性化和相关性团队合作。我们负责根据排名和机器学习向用户提供“个性化和相关的内容”。我们通过一组提供三个公共端点的微服务来做到这一点,即 Home Feed、Search 和 Related items API。我记得加入团队几个月后,下一个挑战是能够为更大的关键国家提供优质服务。目标是保持我们在较小国家/地区已经拥有的完美性能和稳定性。


我们使用 Zookeeper 在 Openshift 上的 AWS 中使用 SolrCloud (v 7.7)。在撰写本文时,我们很自豪地提到,该 API 每分钟服务约 15 万个请求,并每小时向我们最大区域的 Solr 发送约 21 万个更新。

基线


在我们最大的市场中部署 Solr 后,我们必须对其进行测试。我们使用内部工具进行压力测试,我们可以大致获得所需的流量。我们相信 Solr 配置良好,因此团队致力于提高客户端的性能并针对 Solr 设置更高的超时时间。最后我们同意我们可以稍微松散地处理交通。

迁移后


服务以可接受的响应时间进行响应,Solr 客户端表现非常好,直到由于超时而开始打开一些断路器。超时是由 Solr 副本响应时间过长的明显随机问题产生的,这些问题在没有信息显示的情况下更频繁地影响前端客户端。以下是我们遇到的一些问题:

  • 高比例的副本进入恢复并且需要很长时间才能恢复

  • 副本中的错误无法到达领导者,因为它们太忙了

  • 领导者承受过多的负载(来自索引、查询和副本同步),这导致它们无法正常运行并导致分片崩溃

  • 对“索引/更新服务”的怀疑,因为减少其到 Solr 的流量会阻止副本停止或进入恢复模式

  • 完整的垃圾收集器经常运行(老年代和年轻代)。

  • 运行在 CPU 之上的 SearchExecutor 线程,以及垃圾收集器

  • SearchExecutor 线程在缓存预热时抛出异常 (LRUCache.warm)

  • 响应时间从 ~30 ms 增加到 ~1500 ms

  • 发现某些 Solr EBS 卷上的 IOPS 达到 100%

处理问题

分析


作为分析的一部分,我们提出了以下主题

Lucene 设置


Apache Solr 是一个广泛使用的搜索和排名引擎,经过深思熟虑并在后台使用 Lucene 进行设计(也与 ElasticSearch 共享)。Lucene 是所有计算背后的引擎,并为排名和 Faceting 创造了魔力。是否可以对 Lucene 进行数学运算并检查设置?我可以根据大量文档和论坛阅读资料分享一个近似结果,但是它的配置不如 Solr 的数学那么重。
调整 Lucene 是可能的,前提是您愿意牺牲文档的结构。真的值得努力吗?不,当您进一步阅读时,您会发现更多信息。

文档与磁盘大小


假设我们有大约 1000 万个文档。假设平均文档大小为 2 kb。最初,您的磁盘空间将至少占用以下空间:

【搜索引擎】提高Apache Solr 性能,搜索引擎,apache,solr,lucene

分片


一个集合拥有多个分片并不一定会产生更具弹性的 Solr。当一个分片出现问题而其他分片无论如何都可以响应时,时间响应或阻塞器将是最慢的分片。


当我们有多个分片时,我们将文档总数除以分片数。这减少了缓存和磁盘大小并改进了索引过程。

索引/更新过程


是否有可能我们有一个过度杀伤的索引/更新过程?鉴于我们的经验,这并不过分。我将把这个问题的分析留给另一篇文章。否则,这将过于广泛。在我们的主要市场,我们已经达到每小时 21 万次更新(高峰流量)。

Zookeeper


Apache Zookeeper 在此环境中的唯一工作是尽可能准确地保持所有节点的集群状态可用。如果副本恢复过于频繁,一个常见问题是集群状态可能与 Zookeeper 不同步。这将在正在运行的副本之间产生不一致的状态,并且尝试恢复的副本最终会进入一个可能持续数小时的长循环。Zookeeper 非常稳定,它可能仅由于网络资源而失败,或者更好地说是缺少它。

我们有足够的内存吗?

理论


Solr 性能最重要的驱动因素之一是 RAM。Solr 需要足够的内存用于 Java 堆,并需要可用内存用于 OS 磁盘缓存。


强烈建议 Solr 在 64 位 Java 上运行,因为 32 位 Java 被限制为 2GB 堆,这可能会导致更大的堆不存在的人为限制(在本文后面部分讨论) .


让我们快速了解一下 Solr 是如何使用内存的。首先,Solr 使用两种类型的内存:堆内存和直接内存。直接内存用于缓存从文件系统读取的块(类似于 Linux 中的文件系统缓存)。Solr 使用直接内存来缓存从磁盘读取的数据,主要是索引,以提高性能。

【搜索引擎】提高Apache Solr 性能,搜索引擎,apache,solr,lucene

当它被暴露时,大部分堆内存被多个缓存使用。


JVM 堆大小需要与 Solr 堆需求估计相匹配,以及更多用于缓冲目的。堆和操作系统内存设置的这种差异为环境提供了一些空间来适应零星的内存使用高峰,例如后台合并或昂贵的查询,并允许 JVM 有效地执行 GC。例如,在 28Gb RAM 计算机中设置 18Gb 堆。


让我们记住我们一直在为 Solr 改进的方程式,与内存调整最相关的领域如下:

【搜索引擎】提高Apache Solr 性能,搜索引擎,apache,solr,lucene

虽然下面的解释很长而且很复杂,但是为了建立另一个帖子,我仍然想分享我们一直在研究的数学。我们在解决问题之初就使用了自己的计算器,只是为了实现后来在线社区共享的类似问题。
此外,我们确保在启动 Solr 时在 JVM Args 中正确启用垃圾收集器。

【搜索引擎】提高Apache Solr 性能,搜索引擎,apache,solr,lucene

缓存证据


我们根据 Solr 管理面板中的证据调整缓存,如下所示:

  • queryResultCache 的命中率为 0.01

  • filterCache 的命中率为 0.43

  • documentCache 的命中率为 0.01

垃圾收集器和堆


使用 New Relic,我们可以检查实例上的内存和 GC 活动,并注意到 NR 代理由于内存阈值而频繁打开其断路器(浅红色竖线):20%;垃圾收集 CPU 阈值:10%。此行为是实例上可用内存问题的明确证据。

【搜索引擎】提高Apache Solr 性能,搜索引擎,apache,solr,lucene

我们还可以监控一些高 CPU 实例进程,发现在 searcherExecutor 线程使用 100% 的 CPU 时占用了大约 99% 的堆。使用 JMX 和 JConsole,我们遇到了包含以下内容的异常:
…org.apache.solr.search.LRUCache.warm(LRUCache.java:299) …作为堆栈跟踪的一部分。上述异常与缓存设置大小和预热有关。


磁盘活动 — AWS IOPS

【搜索引擎】提高Apache Solr 性能,搜索引擎,apache,solr,lucene

开始解决问题


搜索结果容错


为前端客户端提供搜索结果的第一个想法是始终让 Solr 副本仍然存在以响应查询,以防集群由于副本处于恢复甚至消失状态而变得不稳定。Solr 7 引入了在领导者及其副本之间同步数据的新方法:

  • NRT 副本:在 SolrCloud 中处理复制的旧方法。

  • TLOG replicas:它使用事务日志和二进制复制。

  • PULL 副本:仅从领导者复制并使用二进制复制。

长话短说,NRT 副本可以执行三个最重要的任务,索引、搜索和引导。另一方面,TLOG 副本将以稍微不同的方式处理索引,搜索和引导。差异因素在于 PULL 副本,它只为带有搜索的查询提供服务。


通过应用这种配置,我们可以保证只要分片有领导者,PULL 副本就会响应,从而大大提高可靠性。此外,这种副本不会像处理索引过程的副本那样频繁地进行恢复。


当索引服务满负荷时,我们仍然面临问题,导致 TLog 副本进入恢复。


调整 Solr 内存


基于这个问题我们是否有足够的 RAM 来存储文档数量?,我们决定进行实验。最初的担忧是为什么我们在文档的“单位”中配置这些值,如下所示:

【搜索引擎】提高Apache Solr 性能,搜索引擎,apache,solr,lucene

根据之前共享的公式,考虑到我们有 700 万份文档,估计的 RAM 约为 3800 Gb。但是,假设我们有 5 个分片,那么每个分片将处理大约 140 万个直接影响副本的文档。我们可以估计,使用该分片配置,所需的 RAM 约为 3420 Gb。这不会产生根本性的变化,所以我们继续前进。


缓存结果


从缓存证据中,我们可以看到只有一个缓存被使用得最好,即 filterCache。测试的解决方案如下:

【搜索引擎】提高Apache Solr 性能,搜索引擎,apache,solr,lucene

通过之前的缓存配置,我们获得了以下结果:

  • queryResultCache 的命中率为 0.01

  • filterCache 的命中率为 0.99

  • documentCache 的命中率为 0.02

垃圾收集器结果


在本节中,我们可以看到 New Relic 提供的垃圾收集器指标。我们没有老年代活动,通常会导致 New Relic 代理打开它的断路器(内存耗尽)。

【搜索引擎】提高Apache Solr 性能,搜索引擎,apache,solr,lucene

磁盘活动结果


我们在磁盘活动方面也取得了惊人的成果,索引也大幅下降。

【搜索引擎】提高Apache Solr 性能,搜索引擎,apache,solr,lucene

外部服务结果


其中一项访问 Solr 的服务在 New Relic 中的响应时间和错误率显着下降。

【搜索引擎】提高Apache Solr 性能,搜索引擎,apache,solr,lucene

调整 Solr 集群


多分片模式的一个缺点是,如果任何副本被破坏,分片领导者将比其对等节点花费更多的时间来回答。这导致分片中最差的时间响应,因为 Solr 会在提供最终响应之前等待所有分片回答。


为了缓解上述问题并考虑到前面描述的结果,我们决定开始逐渐减少节点和分片的数量,这对降低内部复制因子有影响。

结论


经过数周的调查、测试和调优,我们不仅摆脱了最初暴露的问题,而且通过减少延迟提高了性能,通过设置更少的分片和更少的副本降低了管理复杂性,获得了对索引/更新的信任服务满负荷工作,并通过使用几乎一半的 AWS EC2 实例帮助公司减少开支。

本文 :https://architect.pub/improving-solr-performance
讨论:知识星球【首席架构师圈】或者加微信小号【ca_cto】或者加QQ群【792862318】
公众号
 
【jiagoushipro】
【超级架构师】
精彩图文详解架构方法论,架构实践,技术原理,技术趋势。
我们在等你,赶快扫描关注吧。
微信小号
 
【ca_cea】
50000人社区,讨论:企业架构,云计算,大数据,数据科学,物联网,人工智能,安全,全栈开发,DevOps,数字化.
 
QQ群
 
【285069459】深度交流企业架构,业务架构,应用架构,数据架构,技术架构,集成架构,安全架构。以及大数据,云计算,物联网,人工智能等各种新兴技术。
加QQ群,有珍贵的报告和干货资料分享。
视频号 【超级架构师】
1分钟快速了解架构相关的基本概念,模型,方法,经验。
每天1分钟,架构心中熟。
知识星球 【首席架构师圈】向大咖提问,近距离接触,或者获得私密资料分享。  
喜马拉雅 【超级架构师】路上或者车上了解最新黑科技资讯,架构心得。 【智能时刻,架构君和你聊黑科技】
知识星球 认识更多朋友,职场和技术闲聊。 知识星球【职场和技术】
领英 Harry https://www.linkedin.com/in/architect-harry/
领英群组 领英架构群组 https://www.linkedin.com/groups/14209750/
微博‍‍ 【超级架构师】 智能时刻‍
哔哩哔哩 【超级架构师】
抖音 【cea_cio】超级架构师
快手 【cea_cio_cto】超级架构师
小红书 【cea_csa_cto】超级架构师  
网站 CIO(首席信息官) https://cio.ceo
网站 CIO,CTO和CDO https://cioctocdo.com
网站 架构师实战分享 https://architect.pub   
网站 程序员云开发分享 https://pgmr.cloud
网站 首席架构师社区 https://jiagoushi.pro
网站 应用开发和开发平台 https://apaas.dev
网站 开发信息网 https://xinxi.dev
网站 超级架构师 https://jiagou.dev
网站 企业技术培训 https://peixun.dev
网站 程序员宝典 https://pgmr.pub    
网站 开发者闲谈 https://blog.developer.chat
网站 CPO宝典 https://cpo.work
网站 首席安全官 https://cso.pub    ‍
网站 CIO酷 https://cio.cool
网站 CDO信息 https://cdo.fyi
网站 CXO信息 https://cxo.pub

谢谢大家关注,转发,点赞和点在看。文章来源地址https://www.toymoban.com/news/detail-582077.html

到了这里,关于【搜索引擎】提高Apache Solr 性能的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【Solr】Solr搜索引擎使用

    其实我们大多数人都使用过Solr,也许你不会相信我说的这句话,但是事实却是如此啊 ! 每当你想买自己喜欢的东东时,你可能会打开某宝或者某东,像这样一搜,就能搜到很多东西,你知道你看到的这些数据都来自哪儿吗?百度一下你就知道!这些数据来自哪儿吗?等你了解完Solr后你就

    2024年02月15日
    浏览(52)
  • 搜索引擎 ElasticSearch, Solr 简介

    作者:禅与计算机程序设计艺术 搜索引擎的功能就是帮助用户快速检索到需要的信息。搜索引擎通常由两个主要组成部分:查询解析器和索引器。查询解析器负责将用户输入的查询文本转换成可以搜索的形式;而索引器则是对网页、文档或者其他信息进行索引并存储在数据库

    2024年01月19日
    浏览(39)
  • 优化记录 -- 记一次搜索引擎(SOLR)优化

    某服务根据用户相关信息,使用搜索引擎进行数据检索 solr 1台:32c 64g 数据10gb左右,版本 7.5.5 应用服务器1台:16c 64g 应用程序 3节点 1、因业务系统因处理能不足,对业务系统硬件平台进行升级,升级变更为 16c64g — 32c64g 增加 16c 2、业务系统升级,处理能力增加,对原搜索引

    2024年02月05日
    浏览(61)
  • Solr在搜索引擎中的用户体验优化

    作者:禅与计算机程序设计艺术 引言 1.1. 背景介绍 搜索引擎是互联网时代最为基础的应用之一,对于用户体验的要求也越来越高。搜索引擎的性能与稳定性、搜索结果的准确性和多样性、搜索结果的相关性等方面都会影响着用户的体验。而Solr是一款高性能、可扩展、易于使

    2024年02月13日
    浏览(52)
  • 高可用的搜索引擎:Elasticsearch与Solr对比

    搜索引擎是现代互联网的基石,它使得我们可以在海量数据中快速找到所需的信息。高可用性是搜索引擎的核心需求,因为用户对于搜索结果的实时性和准确性有很高的要求。Elasticsearch和Solr是两个流行的搜索引擎,它们各自具有独特的优势和特点。在本文中,我们将对比这

    2024年02月20日
    浏览(37)
  • Lucene轻量级搜索引擎,真的太强了!!!Solr 和 ES 都是基于它

    Lucene 是一个本地全文搜索引擎,Solr 和 ElasticSearch 都是基于 Lucene 的封装 Lucene 适合那种轻量级的全文搜索,我就是服务器资源不够,如果上 ES 的话会很占用服务器资源,所有就选择了 Lucene 搜索引擎 全文搜索的原理是使用了倒排索引,那么什么是倒排索引呢? 先通过中文分词器,将文

    2024年03月11日
    浏览(65)
  • Lucene轻量级搜索引擎,Solr 和 ElasticSearch 都是基于 Lucene 的封装

    1、Lucene 是什么 Lucene 是一个本地全文搜索引擎,Solr 和 ElasticSearch 都是基于 Lucene 的封装 Lucene 适合那种轻量级的全文搜索,我就是服务器资源不够,如果上 ES 的话会很占用服务器资源,所有就选择了 Lucene 搜索引擎 2、倒排索引原理 全文搜索的原理是使用了倒排索引,那么什么是倒

    2024年03月15日
    浏览(71)
  • 《Spring Boot 实战派》--13.集成NoSQL数据库,实现Elasticsearch和Solr搜索引擎

             关于搜索引擎 我们很难实现 Elasticseach 和 Solr两大搜索框架的效果;所以本章针对两大搜索框架,非常详细地讲解 它们的原理和具体使用方法, 首先 介绍什么是搜索引擎 、如何用 MySQL实现简单的搜索引擎,以及Elasticseach 的 概念和接口类; 然后介绍Elasticseach

    2023年04月09日
    浏览(88)
  • Lucene和Solr和Elasticsearch区别,全文检索引擎工具包Lucene索引流程和搜索流程实操

    我们生活中的数据总体分为两种: 结构化数据和非结构化数据 。 结构化数据 :指具有固定格式或有限长度的数据,如数据库,元数据等。 非结构化数据 :指不定长或无固定格式的数据,如 互联网数据、邮件,word文档等。 非结构化数据又有一种叫法叫全文数据 按照数据的

    2024年02月03日
    浏览(42)
  • 站群服务器如何提高搜索引擎排名

    站群服务器是一种专门为多个相关联的网站提供支持的服务器,旨在通过网站集合的形式提高搜索引擎排名和曝光度。那么站群服务器如何提高搜索引擎排名呢?Rak部落小编为您整理发布。 站群服务器提高搜索引擎排名的原理主要在于以下几个方面: - **提高网站覆盖面**:通

    2024年04月16日
    浏览(41)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包