Matlab实现神经网络SOM算法(附上完整仿真源码)

这篇具有很好参考价值的文章主要介绍了Matlab实现神经网络SOM算法(附上完整仿真源码)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

神经网络SOM算法是一种基于自组织的无监督学习算法,其全称为Self-Organizing Map,可以用来对数据进行聚类和可视化。本文将介绍如何使用Matlab实现神经网络SOM算法。

一、准备工作

在使用Matlab实现神经网络SOM算法之前,需要先安装Matlab软件,并且需要下载Matlab的神经网络工具箱。在Matlab中,可以通过命令窗口输入“ver”命令查看是否已经安装了神经网络工具箱。

二、数据准备

在进行SOM算法之前,需要先准备好数据。本文以Iris数据集为例,该数据集包含150个样本,每个样本有四个特征。可以通过Matlab自带的load命令来读取数据集。

load fisheriris.mat
data = meas';

其中,data为读取的数据集,每一列代表一个样本,每一行代表一个特征。

三、SOM算法实现

在Matlab中,可以通过使用newsom函数来创建一个SOM网络。newsom函数的语法如下:

net = newsom(data,[x y],'gridtop',distance)

其中,data为输入数据,[x y]为SOM网络的大小,gridtop为SOM网络的拓扑结构,distance为距离度量方法。在本文中,我们使用的是网格状的SOM网络,距离度量方法为欧几里得距离。因此,可以使用以下命令来创建SOM网络。

net = newsom(data,[10 10],'gridtop','dist')

创建SOM网络之后,需要对网络进行训练。在Matlab中,可以使用train函数来对网络进行训练。train函数的语法如下:

net = train(net,data)

其中,net为要训练的SOM网络,data为输入数据。在训练过程中,可以设置训练参数,如学习率和邻域半径等。在本文中,我们使用默认的训练参数。

训练完成后,可以使用plotsompos函数来可视化SOM网络。plotsompos函数的语法如下:

plotsompos(net)

该函数会生成一个二维图像,其中每个点代表一个神经元,点的颜色表示该神经元对应的权值向量在输入数据中的位置。可以通过观察该图像来判断SOM网络是否能够对输入数据进行有效的聚类。

四、聚类结果分析

在SOM网络训练完成后,可以使用sim函数来计算输入数据在SOM网络中的聚类结果。sim函数的语法如下:

cluster = sim(net,data)

其中,cluster为聚类结果,它是一个长度为输入数据样本数的向量,每个元素代表该样本所属的聚类编号。可以使用Matlab自带的hist函数来统计聚类结果的分布情况。

hist(cluster)

通过观察聚类结果的分布情况,可以评估SOM网络对输入数据的聚类效果。

五、总结

本文介绍了如何使用Matlab实现神经网络SOM算法,并对聚类结果进行分析。SOM算法是一种常用的无监督学习算法,可以用来对数据进行聚类和可视化。在实际应用中,可以根据具体问题对SOM算法进行调整和优化,以获得更好的聚类效果。

六、完整源码下载

基于Matlab实现神经网络SOM算法(源码+数据).rar:https://download.csdn.net/download/m0_62143653/87803858

基于Matlab实现竞争神经网络与SOM神经网络(源码+数据).rar :https://download.csdn.net/download/m0_62143653/88066592

基于Matlab实现BP、CPN、GRNN、Hopfield、LVQ、RBF、PNN、SOM、小波和自组织竞争神经网络(源码+数据).rar:https://download.csdn.net/download/m0_62143653/87803831

基于Matlab实现SOM神经网络的数据分类-柴油机故障诊断仿真(源码+数据).rar:https://download.csdn.net/download/m0_62143653/87781277文章来源地址https://www.toymoban.com/news/detail-582353.html

到了这里,关于Matlab实现神经网络SOM算法(附上完整仿真源码)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Matlab使用BP和LVQ神经网络、图像处理技术三种方法实现人脸识别(附上完整仿真源码+数据)

    人脸识别是一种常见的生物特征识别技术,广泛应用于人脸门禁、人脸支付等领域。在人脸识别中,神经网络和图像处理技术是两种常用的方法。本文将介绍如何使用Matlab实现人脸识别,包括BP神经网络、LVQ神经网络和图像处理技术。 首先,我们将介绍BP神经网络的人脸识别

    2024年02月13日
    浏览(47)
  • Matlab遗传神经网络在图像分割中的应用(附上完整源码+数据)

    图像分割是计算机视觉领域的一个重要研究方向,它在图像处理、目标识别等领域具有广泛的应用。遗传神经网络是一种结合了遗传算法和人工神经网络的智能优化方法,具有全局搜索和并行处理的优势。本文将介绍如何利用Matlab遗传神经网络工具箱进行图像分割,并分析其

    2024年02月12日
    浏览(45)
  • Matlab小波神经网络时间序列预测交通流量(附上完整仿真源码+数据)

    交通流量的准确预测对于交通管理和规划具有重要意义。本文提出了一种基于Matlab小波神经网络的交通流量时间序列预测方法。首先,通过小波分析对交通流量时间序列进行特征提取,得到不同尺度的小波系数。然后,将小波系数作为输入,通过神经网络模型进行训练和预测

    2024年02月12日
    浏览(37)
  • 时序预测 | Matlab实现SOM-BP自组织映射结合BP神经网络时间序列预测

    预测效果 基本介绍 1.Matlab实现SOM-BP自组织映射结合BP神经网络时间序列预测(完整源码和数据); 2.数据集为excel,单列时间序列数据集,运行主程序main.m即可,其余为函数文件,无需运行; 3.优化参数为神经网络的权值和偏置,命令窗口输出RMSE、MAPE、MAE、R2等评价指标; 4

    2024年04月12日
    浏览(38)
  • matlab实现BP神经网络(完整DEMO)

    本站原创文章,转载请说明来自《老饼讲解-BP神经网络》 www.bbbdata.com 目录 一、BP神经网络Demo代码    1.1 代码整体思路 1.2 BP神经网络Demo代码 二、运行结果    2.1 拟合曲线   2.2训练误差与预测误差 三、相关文章 3.1-BP的入门学习目录:老饼|BP神经网络-入门教程 3.2-BP的建模

    2024年02月05日
    浏览(42)
  • BP神经网络优化 | MATLAB基于遗传算法优化BP神经网络(GA-BP)的预测模型(含完整代码)

    文章目录 前言 一、遗传算法描述 二、优化思路 三、完整代码 预测结果  首先需要安装一下遗传算法工具箱,可参考这篇博客 MATLAB遗传算法工具箱安装包及安装方法(图解)_周杰伦今天喝奶茶了吗的博客-CSDN博客_matlab遗传算法工具箱安装 本模型可以结合自己的数据集进行

    2024年02月02日
    浏览(61)
  • 算法介绍及实现——基于遗传算法改进的BP神经网络算法(附完整Python实现)

    目录 一、算法介绍 1.1 遗传算法 1.2 为什么要使用遗传算法进行改进 二、算法原理 三、算法实现 3.1 算子选择 3.2 代码实现          遗传算法是受启发于自然界中生物对于自然环境 “适者生存”的强大自适应能力,通过对生物演化过程模拟和抽象,构建了以自然界生物演

    2024年02月03日
    浏览(115)
  • 基于遗传算法的BP神经网络优化算法(matlab实现)

            BP网络是一类多层的前馈神经网络。它的名字源于在网络训练的过程中,调整网络的权值的算法是误差的反向传播的学习算法,即为BP学习算法。BP算法是Rumelhart等人在1986年提出来的。由于它的结构简单,可调整的参数多,训练算法也多,而且可操作性好,BP神经网

    2024年01月16日
    浏览(58)
  • (转载)神经网络遗传算法函数极值寻优(matlab实现)

            对于未知的非线性函数,仅通过函数的输入输出数据难以准确寻找函数极值。这类问题可以通过神经网络结合遗传算法求解,利用神经网络的非线性拟合能力和遗传算法的非线性寻优能力寻找函数极值。本章用神经网络遗传算法寻优如下非线性函数极值,该函数表达式

    2024年02月16日
    浏览(43)
  • Matlab实现遗传算法(附上完整仿真源码)

    遗传算法(Genetic Algorithm,GA)是一种基于生物进化理论的优化算法,通过模拟自然界中的遗传过程,来寻找最优解。 在遗传算法中,每个解被称为个体,每个个体由一组基因表示,每个基因是解空间中的一个变量。算法通过不断地交叉、变异、选择等操作,来寻找最优解。

    2024年02月04日
    浏览(42)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包