推导:计算 ∂ ∂ x ( a ⊤ x ) \frac{\partial}{\partial \mathbf{x}} (\mathbf{a}^\top \mathbf{x}) ∂x∂(a⊤x)
-
定义函数:我们定义函数 f ( x ) = a ⊤ x f(\mathbf{x}) = \mathbf{a}^\top \mathbf{x} f(x)=a⊤x,其中 a \mathbf{a} a 是一个列向量,维度为 n × 1 n \times 1 n×1, x \mathbf{x} x 也是一个列向量,维度为 n × 1 n \times 1 n×1。
-
展开表达式:将 a ⊤ x \mathbf{a}^\top \mathbf{x} a⊤x 展开为矩阵乘法的形式:
a ⊤ x = [ a 1 a 2 … a n ] [ x 1 x 2 ⋮ x n ] = a 1 x 1 + a 2 x 2 + … + a n x n \mathbf{a}^\top \mathbf{x} = \begin{bmatrix} a_1 & a_2 & \ldots & a_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = a_1 x_1 + a_2 x_2 + \ldots + a_n x_n a⊤x=[a1a2…an] x1x2⋮xn =a1x1+a2x2+…+anxn -
求偏导数:计算 f ( x ) f(\mathbf{x}) f(x) 对 x \mathbf{x} x 的偏导数。
∂ ∂ x ( a ⊤ x ) = ∂ ∂ x ( a 1 x 1 + a 2 x 2 + … + a n x n ) \frac{\partial}{\partial \mathbf{x}} (\mathbf{a}^\top \mathbf{x}) = \frac{\partial}{\partial \mathbf{x}} (a_1 x_1 + a_2 x_2 + \ldots + a_n x_n) ∂x∂(a⊤x)=∂x∂(a1x1+a2x2+…+anxn) -
分别求导:根据矢量微积分的规则,我们可以逐个求解 a i x i a_i x_i aixi 的偏导数,其中 i i i 表示向量的索引。
∂ ∂ x ( a 1 x 1 + a 2 x 2 + … + a n x n ) = [ ∂ ∂ x 1 ( a 1 x 1 + a 2 x 2 + … + a n x n ) ∂ ∂ x 2 ( a 1 x 1 + a 2 x 2 + … + a n x n ) ⋮ ∂ ∂ x n ( a 1 x 1 + a 2 x 2 + … + a n x n ) ] \frac{\partial}{\partial \mathbf{x}} (a_1 x_1 + a_2 x_2 + \ldots + a_n x_n) = \begin{bmatrix} \frac{\partial}{\partial x_1} (a_1 x_1 + a_2 x_2 + \ldots + a_n x_n) \\ \frac{\partial}{\partial x_2} (a_1 x_1 + a_2 x_2 + \ldots + a_n x_n) \\ \vdots \\ \frac{\partial}{\partial x_n} (a_1 x_1 + a_2 x_2 + \ldots + a_n x_n) \end{bmatrix} ∂x∂(a1x1+a2x2+…+anxn)= ∂x1∂(a1x1+a2x2+…+anxn)∂x2∂(a1x1+a2x2+…+anxn)⋮∂xn∂(a1x1+a2x2+…+anxn)
-
求导结果:由于我们对 x i x_i xi 求导数时,除了与 x i x_i xi 相关的项以外的其他项都是常数,所以求导结果为:
∂ ∂ x i ( a 1 x 1 + a 2 x 2 + … + a n x n ) = a i \frac{\partial}{\partial x_i} (a_1 x_1 + a_2 x_2 + \ldots + a_n x_n) = a_i ∂xi∂(a1x1+a2x2+…+anxn)=ai -
综合结果:得到最终结果:
∂ ∂ x ( a ⊤ x ) = [ a 1 a 2 ⋮ a n ] = a \frac{\partial}{\partial \mathbf{x}} (\mathbf{a}^\top \mathbf{x}) = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} = \mathbf{a} ∂x∂(a⊤x)= a1a2⋮an =a
文章来源:https://www.toymoban.com/news/detail-582677.html
因此,
∂
∂
x
(
a
⊤
x
)
\frac{\partial}{\partial \mathbf{x}} (\mathbf{a}^\top \mathbf{x})
∂x∂(a⊤x) 的结果是列向量
a
\mathbf{a}
a。
说明:
这里偏导数的求导结果是一个列向量,它的维度和分母(列向量x)一致。文章来源地址https://www.toymoban.com/news/detail-582677.html
到了这里,关于【线性代数】向量函数求偏导的推导过程的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!