提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档
文章目录
-
目录
文章目录
前言
一、硬件连接
二、数据包传输
三、openmv发送stm32端接收
1.openmv端(发送函数)
2.stm32端(接收函数)
串口中断服务函数:
数据读取函数:
数据处理函数:
main函数oled屏幕显示调用:
3.实物调试
四、stm32发送openmv端接收
1.stm32端(发送函数)
2.openmv端(接收函数)
3.openmv主函数调用
4.openmv调试展示
五、完整代码1(openmv发送stm32端接收)
1.openmv发送
2.stm32端接收
六、完整代码2(stm32端发送openmv接收)
1.stm32端
2.openmv端
总结
总结
前言
前段时间参加电赛校赛的时候题目是做21年f题智能送药小车,在openmv与stm32通信中遇到了些困难,通过看一些大佬们的文章与例程,我总结出了一套实用性不错的通信协议代码,一方面是对自己的知识进行总结,另一方面也可以将其提供给有需要的同学,如有理解错误,欢迎大佬们的指正。
提示:以下是本篇文章正文内容,下面案例可供参考
一、硬件连接
我所用到的材料如下: 四针IIC OLED,OpenMV4 7h(OV7725),STM32F103C8T6最小系统板,数据线N条,LED灯模块(OpenMV的数据线只能用官方自带的),杜邦线若干。
下图以Arduino为例把主控TXD与openmv的P5连接,RXD与openmv的P4连接,在STM32端:USART_TX—PA9 -----USART_RX—PA10。(用的是32的USART1)
四针IIC OLED连接:
SDA--PB9,SCL--PB8;GND,VCC(3.3V)正常接入就好;
二、数据包传输
这里采用的数据包传输方式是固定包长,含包头包尾方式(即为第一种),帧头帧尾不固定,可自定义,图示帧头帧尾分别为0xfe与0xef;代码呈现的分别是0xb3,0xb5,下图为图解原理:
三、openmv发送stm32端接收
1.openmv端(发送函数)
这里是根据当时做送药小车的模板匹配所用的主要发送程序,完整程序会在文末呈现。
代码如下(示例):
#最初加载匹配
def FirstFindTemplate(template):
R = img.find_template(template, 0.8, step=1, roi=(40, 0, 70, 40), search=SEARCH_EX) #只检测中间的
return R
def FirstFindedNum(R, Finded_Num): #第一个参数是模板匹配的对象,第二个是它所代表的数字
global Find_Task
global find_flag
img.draw_rectangle(R, color=(225, 0, 0))
LoR = 0
find_flag = 1
Num = Finded_Num
FH = bytearray([0xb3,0xb3,Num, LoR,Find_Task,0x5b])
uart.write(FH)
print("目标病房号:", Num)
这里的FirstFindTemplate(template)函数是用于识别,识别成功后返回R值,主函数在调用FirstFindedNum(R, Finded_Num)时会将R值传输进去,识别到之后进行框选,然后bytearray([, , ,])组合uart.write()将打包好的参数进行发送。
2.stm32端(接收函数)
代码如下(示例):这里先省略初始化以及变量定义的程序,文末补全
串口中断服务函数:
void USART1_IRQHandler(void) //串口1中断服务程序
{
u8 com_data;
#if SYSTEM_SUPPORT_OS //如果SYSTEM_SUPPORT_OS为真,则需要支持OS.
OSIntEnter();
#endif
if(USART_GetITStatus(USART1, USART_IT_RXNE) != RESET) //接收中断(接收到的数据必须是0x0d 0x0a结尾)
{
USART_ClearFlag(USART1,USART_FLAG_RXNE);
com_data = USART1->DR;
Openmv_Receive_Data(com_data); //openmv数据处理函数
Openmv_Data(); //openmv数据处理函数
}
#if SYSTEM_SUPPORT_OS //如果SYSTEM_SUPPORT_OS为真,则需要支持OS.
OSIntExit();
#endif
}
常规串口中断程序,串口接收到数据后查询标志位,查询完成后清除并开始将数据读取处理。
数据读取函数:
void Openmv_Receive_Data(int16_t data)//接收Openmv传过来的数据
{
static u8 state = 0;
if(state==0&&data==0xb3)//第一个帧头
{
state=1;
openmv[0]=data;
}
else if(state==1&&data==0xb3)//第二个帧头
{
state=2;
openmv[1]=data;
}
else if(state==2)//第一个有效数据
{
state=3;
openmv[2]=data;
}
else if(state==3)//第二个有效数据
{
state = 4;
openmv[3]=data;
}
else if(state==4)//第三个有效数据
{
state = 5;
openmv[4]=data;
}
else if(state==5) //检测是否接受到结束标志,检测接收帧尾
{
if(data == 0x5B)
{
state = 0;
openmv[5]=data;
Openmv_Data();
}
else if(data != 0x5B)
{
state = 0;
for(i=0;i<6;i++)
{
openmv[i]=0x00;
}
}
}
else
{
state = 0;
for(i=0;i<6;i++)
{
openmv[i]=0x00;
}
}
}
先解析帧头(我这里用了两个帧头,一个也可以,但是与openmv那边一定要相同),再解析有效数据,有效数据接受完传递到openmv[i]数据缓存区后调用Openmv_Data()对数据进行处理,最后解析帧尾。
数据处理函数:
void Openmv_Data(void)//处理Openmv接收的数据
{
TargerNum=openmv[2];
LoR=openmv[3];
Find_Task =openmv[4];
}
这里被调用是为了将openmv端的数据传递给变量进行储存,方便在main函数对变量进行打印。
main函数oled屏幕显示调用:
extern int16_t TargerNum;
extern int16_t Find_Task;
extern int16_t LoR;
int main(void)
{
Usart1_Init(115200);
OLED_Init();
OLED_ShowString(1,1,"TargerNum:");
OLED_ShowString(2,1,"LoR:");
OLED_ShowString(3,1,"Find_Task: ");
while (1)
{
OLED_ShowNum(1,11,TargerNum,2);
OLED_ShowNum(2,5,LoR,2);
OLED_ShowNum(3,11,Find_Task,2);
}
}
3.实物调试
程序实现效果,当openmv识别到数字后,会通过调用串口发送函数将数据包发送到stm32主控,如图示:
此时已识别数字1并框选
oled这边也接收到了数字TargetNum为1,Find_Task为1,LoR暂时未用不需要理会。
注:数据是以16进制发送过来,但是这里oled是以10进制的形式打印,因为只是1-8数字,所以不会太大影响。
四、stm32发送openmv端接收
1.stm32端(发送函数)
这里数据位逐位发送,与openmv接收端解析函数相匹配。
代码如下(示例):
void Usart1_Sendata(u8 * str)
{
u8 i = 0;
USART_SendData(USART1,0x0d);
while( USART_GetFlagStatus(USART1,USART_FLAG_TC)!= SET);
for(i = 0;i < 2;i++)
{
USART_SendData(USART1,str[i]);
while( USART_GetFlagStatus(USART1,USART_FLAG_TC)!= SET);
}
USART_SendData(USART1,0x5b);
while( USART_GetFlagStatus(USART1,USART_FLAG_TC)!= SET);
}
int main(void)
{
NVIC_Config();
Usart1_Init(115200);
Find_Task=1;
TargerNum=3;
u8 send_buff[2] = {TargerNum,Find_Task};
while (1)
{
Usart1_Sendata(send_buff);
}
}
首先解析第一位数据是否为帧头,同时判断发送标志位是否已经检测到,完成后进行有效数据位发送,这里用for循环,使用库函数USART_SendData(USART1,str[i]),将数据发送出去,同时检测标志位,完成后发送帧尾。
而主函数部分是数组内数据进行反复发送。
2.openmv端(接收函数)
这里对stm32那边的数据包进行解析实际上同上方的原理大同小异,这里的数据长度可以自行更改,但是需要发送端和接收端的接收和发送函数相匹配,包括数据缓存区长度也要符合。
代码如下(示例):
########串口接收数据函数处理#########
def Receive_Prepare(): #data
global state
global x
global tx_flag
global data
global Find_Task
global Target_Num
if state==0:
data[0]=uart.readchar()
if data[0] == 0x0d:#帧头
state = 1
else:
state = 0
rx_buff.clear()
elif state==1:
data[1]=uart.readchar()
#rx_buff.append(data)
Target_Num=data[x+1]
state = 2
elif state==2:
data[2]=uart.readchar()
#rx_buff.append(data)
Find_Task=data[x+2]
state = 3
elif state == 3:
data[4]=uart.readchar()
if data[4] == 0x5b:
tx_flag = int(data[0])
state = 4
elif state == 4:
state=0
else:
state = 0
rx_buff.clear()
3.openmv主函数调用
while (True):
clock.tick()
img = sensor.snapshot()# 镜头初始化
if(uart.any()>0):
Receive_Prepare()
print(clock.fps(),Find_Task, Target_Num)
这里的if(uart.any()>0):是检测是否有数据传输进来,有的话就执行。
调用接收函数Receive_Prepare(),把Find_Task, Target_Num在串行终端中打印出来。
4.openmv调试展示
这里我们用ide自带的串行终端进行观察调试结果
可以看到,此时的openmv端接收到数字Find_Task为1,TargetNum为3,LoR暂时未用不需要理会。
注:这里接收/发送有点小问题,如果不断的接收打印,数据会变成13,1,通信时请注意;可能通信协议有点小毛病,希望大佬们可以指正。
五、完整代码1(openmv发送stm32端接收)
(如果上面看的一头雾水可以试试看完全部程序,也方便梳理)
1.openmv发送
import time, image,sensor,math,pyb,ustruct
from image import SEARCH_EX, SEARCH_DS
from pyb import Pin, Timer,LED
#从imgae模块引入SEARCH_EX和SEARCH_DS。使用from import仅仅引入SEARCH_EX,
#SEARCH_DS两个需要的部分,而不把image模块全部引入。
sensor.reset()
# Set sensor settings
sensor.set_contrast(1)
sensor.set_gainceiling(16)
# Max resolution for template matching with SEARCH_EX is QQVGA
sensor.set_framesize(sensor.QQVGA)
# You can set windowing to reduce the search image.
sensor.set_pixformat(sensor.GRAYSCALE)
sensor.set_windowing(0, 40, 160, 40) #观察窗口 后面ROI设置也会以这个为新的基准
rx_buff=[]
state = 0
tx_flag = 0
# Load template.
# Template should be a small (eg. 32x32 pixels) grayscale image.
#加载模板图片
template01 = image.Image("/1.pgm")
template02 = image.Image("/2.pgm")
template03 = image.Image("/3.pgm")
template04 = image.Image("/4.pgm")
template05 = image.Image("/5.pgm")
template06 = image.Image("/6.pgm")
template07 = image.Image("/7.pgm")
template08 = image.Image("/8.pgm")
uart = pyb.UART(3, 115200, timeout_char = 1000) #定义串口1变量
blue_led = LED(2)
Find_Task =1 #1
Target_Num =0
##### FindTask == 1 时使用
#最初加载匹配
def FirstFindTemplate(template):
R = img.find_template(template, 0.8, step=1, roi=(40, 0, 70, 40), search=SEARCH_EX) #只检测中间的
return R
def FirstFindedNum(R, Finded_Num): #第一个参数是模板匹配的对象,第二个是它所代表的数字
global Find_Task
global find_flag
img.draw_rectangle(R, color=(225, 0, 0))
#本来中值是80的,但返回值是框边缘,所以减去15就好 小于65是在左边,大于65是在右边
LoR = 0
find_flag = 1
Num = Finded_Num
FH = bytearray([0xb3,0xb3,Num, LoR,Find_Task,0x5b])
uart.write(FH)
print("目标病房号:", Num)
clock = time.clock()
# Run template matching
while (True):
clock.tick()
img = sensor.snapshot()# 镜头初始化
# find_template(template, threshold, [roi, step, search])
# ROI: The region of interest tuple (x, y, w, h).
# Step: The loop step used (y+=step, x+=step) use a bigger step to make it faster.
# Search is either image.SEARCH_EX for exhaustive search or image.SEARCH_DS for diamond search
#
# Note1: ROI has to be smaller than the image and bigger than the template.
# Note2: In diamond search, step and ROI are both ignored.
if Find_Task == 1:
#进行模板匹配
r01 = FirstFindTemplate(template01)
r02 = FirstFindTemplate(template02)
r03 = FirstFindTemplate(template03)
r04 = FirstFindTemplate(template04)
r05 = FirstFindTemplate(template05)
r06 = FirstFindTemplate(template06)
r07 = FirstFindTemplate(template07)
r08 = FirstFindTemplate(template08)
#判断哪个模板匹配成功,并将成功匹配的相应数据发送给主控
if r01:
FirstFindedNum(r01, 1)
elif r02:
FirstFindedNum(r02,2)
elif r03:
FirstFindedNum(r03,3)
elif r04:
FirstFindedNum(r04,4)
elif r05:
FirstFindedNum(r05,5)
elif r06:
FirstFindedNum(r06,6)
elif r07:
FirstFindedNum(r07,7)
elif r08:
FirstFindedNum(r08,8)
else:
FH = bytearray([0x2C,0x12,0x00, 0x00, 0x00, 0x00,0x5B])
uart.write(FH)
else: time.sleep_ms(100)
print(clock.fps(),Find_Task, Target_Num)
多出来的数据位不需要那么多的话可以选择对代码进行删减,或者直接当成0x00发送,不会有太大影响。
2.stm32端接收
usart1.c
#include "usart1.h"
//char TargerNum='0';
int openmv[6];//stm32接收数据数组
int16_t TargerNum;
int16_t Find_Task;
int16_t LoR;
int i;
/**
* 函数名:Usart1_Init
* 描述:串口1初始化
* 输入:Bound-波特率
* 输出:无
*/
void Usart1_Init(uint32_t Bound)
{
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA,ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1,ENABLE);
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOA,&GPIO_InitStructure);
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
GPIO_Init(GPIOA,&GPIO_InitStructure);
USART_InitTypeDef USART_InitStructure;
USART_InitStructure.USART_BaudRate = Bound;
USART_InitStructure.USART_WordLength = USART_WordLength_8b;
USART_InitStructure.USART_StopBits = USART_StopBits_1;
USART_InitStructure.USART_Parity = USART_Parity_No;
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
USART_InitStructure.USART_Mode = USART_Mode_Tx | USART_Mode_Rx;
USART_Init(USART1,&USART_InitStructure);
NVIC_InitTypeDef NVIC_InitStructure;
NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
USART_ITConfig(USART1,USART_IT_RXNE,ENABLE);
USART_Cmd(USART1,ENABLE);
}
void Openmv_Data(void)//处理Openmv接收的数据
{
TargerNum=openmv[2];
LoR=openmv[3];
Find_Task =openmv[4];
}
void Openmv_Receive_Data(int16_t data)//接收Openmv传过来的数据
{
static u8 state = 0;
if(state==0&&data==0xb3)//第一个帧头
{
state=1;
openmv[0]=data;
}
else if(state==1&&data==0xb3)//第二个帧头
{
state=2;
openmv[1]=data;
}
else if(state==2)//第一个有效数据
{
state=3;
openmv[2]=data;
}
else if(state==3)//第二个有效数据
{
state = 4;
openmv[3]=data;
}
else if(state==4)//第三个有效数据
{
state = 5;
openmv[4]=data;
}
else if(state==5) //检测是否接受到结束标志,检测接收帧尾
{
if(data == 0x5B)
{
state = 0;
openmv[5]=data;
Openmv_Data();
}
else if(data != 0x5B)
{
state = 0;
for(i=0;i<6;i++)
{
openmv[i]=0x00;
}
}
}
else
{
state = 0;
for(i=0;i<6;i++)
{
openmv[i]=0x00;
}
}
}
void USART_SendByte(USART_TypeDef* USARTx, char str)
{
USART_SendData(USARTx, str);//发送单个字符
while(USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET);//判断是否发送完成
}
void USART1_IRQHandler(void) //串口1中断服务程序
{
u8 com_data;
#if SYSTEM_SUPPORT_OS //如果SYSTEM_SUPPORT_OS为真,则需要支持OS.
OSIntEnter();
#endif
if(USART_GetITStatus(USART1, USART_IT_RXNE) != RESET) //接收中断(接收到的数据必须是0x0d 0x0a结尾)
{
USART_ClearFlag(USART1,USART_FLAG_RXNE);
com_data = USART1->DR;
Openmv_Receive_Data(com_data); //openmv数据处理函数
Openmv_Data(); //openmv数据处理函数
}
#if SYSTEM_SUPPORT_OS //如果SYSTEM_SUPPORT_OS为真,则需要支持OS.
OSIntExit();
#endif
}
usart1.h
#ifndef __USART1_H
#define __USART1_H
#include "stm32f10x.h" // Device header
#include "sys.h"
void Usart1_Init(uint32_t Bound);
#endif
oled.c
#include "stm32f10x.h"
#include "OLED_Font.h"
#include "stdio.h"
/*引脚配置*/
#define OLED_W_SCL(x) GPIO_WriteBit(GPIOB, GPIO_Pin_8, (BitAction)(x))
#define OLED_W_SDA(x) GPIO_WriteBit(GPIOB, GPIO_Pin_9, (BitAction)(x))
/*引脚初始化*/
void OLED_I2C_Init(void)
{
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE);
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_OD;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8;
GPIO_Init(GPIOB, &GPIO_InitStructure);
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;
GPIO_Init(GPIOB, &GPIO_InitStructure);
OLED_W_SCL(1);
OLED_W_SDA(1);
}
/**
* @brief I2C开始
* @param 无
* @retval 无
*/
void OLED_I2C_Start(void)
{
OLED_W_SDA(1);
OLED_W_SCL(1);
OLED_W_SDA(0);
OLED_W_SCL(0);
}
/**
* @brief I2C停止
* @param 无
* @retval 无
*/
void OLED_I2C_Stop(void)
{
OLED_W_SDA(0);
OLED_W_SCL(1);
OLED_W_SDA(1);
}
/**
* @brief I2C发送一个字节
* @param Byte 要发送的一个字节
* @retval 无
*/
void OLED_I2C_SendByte(uint8_t Byte)
{
uint8_t i;
for (i = 0; i < 8; i++)
{
OLED_W_SDA(Byte & (0x80 >> i));
OLED_W_SCL(1);
OLED_W_SCL(0);
}
OLED_W_SCL(1); //额外的一个时钟,不处理应答信号
OLED_W_SCL(0);
}
/**
* @brief OLED写命令
* @param Command 要写入的命令
* @retval 无
*/
void OLED_WriteCommand(uint8_t Command)
{
OLED_I2C_Start();
OLED_I2C_SendByte(0x78); //从机地址
OLED_I2C_SendByte(0x00); //写命令
OLED_I2C_SendByte(Command);
OLED_I2C_Stop();
}
/**
* @brief OLED写数据
* @param Data 要写入的数据
* @retval 无
*/
void OLED_WriteData(uint8_t Data)
{
OLED_I2C_Start();
OLED_I2C_SendByte(0x78); //从机地址
OLED_I2C_SendByte(0x40); //写数据
OLED_I2C_SendByte(Data);
OLED_I2C_Stop();
}
/**
* @brief OLED设置光标位置
* @param Y 以左上角为原点,向下方向的坐标,范围:0~7
* @param X 以左上角为原点,向右方向的坐标,范围:0~127
* @retval 无
*/
void OLED_SetCursor(uint8_t Y, uint8_t X)
{
OLED_WriteCommand(0xB0 | Y); //设置Y位置
OLED_WriteCommand(0x10 | ((X & 0xF0) >> 4)); //设置X位置高4位
OLED_WriteCommand(0x00 | (X & 0x0F)); //设置X位置低4位
}
/**
* @brief OLED清屏
* @param 无
* @retval 无
*/
void OLED_Clear(void)
{
uint8_t i, j;
for (j = 0; j < 8; j++)
{
OLED_SetCursor(j, 0);
for(i = 0; i < 128; i++)
{
OLED_WriteData(0x00);
}
}
}
/**
* @brief OLED显示一个字符
* @param Line 行位置,范围:1~4
* @param Column 列位置,范围:1~16
* @param Char 要显示的一个字符,范围:ASCII可见字符
* @retval 无
*/
void OLED_ShowChar(uint8_t Line, uint8_t Column, char Char)
{
uint8_t i;
OLED_SetCursor((Line - 1) * 2, (Column - 1) * 8); //设置光标位置在上半部分
for (i = 0; i < 8; i++)
{
OLED_WriteData(OLED_F8x16[Char - ' '][i]); //显示上半部分内容
}
OLED_SetCursor((Line - 1) * 2 + 1, (Column - 1) * 8); //设置光标位置在下半部分
for (i = 0; i < 8; i++)
{
OLED_WriteData(OLED_F8x16[Char - ' '][i + 8]); //显示下半部分内容
}
}
/**
* @brief OLED显示字符串
* @param Line 起始行位置,范围:1~4
* @param Column 起始列位置,范围:1~16
* @param String 要显示的字符串,范围:ASCII可见字符
* @retval 无
*/
void OLED_ShowString(uint8_t Line, uint8_t Column, char *String)
{
uint8_t i;
for (i = 0; String[i] != '\0'; i++)
{
OLED_ShowChar(Line, Column + i, String[i]);
}
}
/**
* @brief OLED次方函数
* @retval 返回值等于X的Y次方
*/
uint32_t OLED_Pow(uint32_t X, uint32_t Y)
{
uint32_t Result = 1;
while (Y--)
{
Result *= X;
}
return Result;
}
/**
* @brief OLED显示数字(十进制,正数)
* @param Line 起始行位置,范围:1~4
* @param Column 起始列位置,范围:1~16
* @param Number 要显示的数字,范围:0~4294967295
* @param Length 要显示数字的长度,范围:1~10
* @retval 无
*/
void OLED_ShowNum(uint8_t Line, uint8_t Column, uint32_t Number, uint8_t Length)
{
uint8_t i;
for (i = 0; i < Length; i++)
{
OLED_ShowChar(Line, Column + i, Number / OLED_Pow(10, Length - i - 1) % 10 + '0');
}
}
/**
* @brief OLED显示数字(十进制,带符号数)
* @param Line 起始行位置,范围:1~4
* @param Column 起始列位置,范围:1~16
* @param Number 要显示的数字,范围:-2147483648~2147483647
* @param Length 要显示数字的长度,范围:1~10
* @retval 无
*/
void OLED_ShowSignedNum(uint8_t Line, uint8_t Column, int32_t Number, uint8_t Length)
{
uint8_t i;
uint32_t Number1;
if (Number >= 0)
{
OLED_ShowChar(Line, Column, '+');
Number1 = Number;
}
else
{
OLED_ShowChar(Line, Column, '-');
Number1 = -Number;
}
for (i = 0; i < Length; i++)
{
OLED_ShowChar(Line, Column + i + 1, Number1 / OLED_Pow(10, Length - i - 1) % 10 + '0');
}
}
/**
* @brief OLED显示数字(十六进制,正数)
* @param Line 起始行位置,范围:1~4
* @param Column 起始列位置,范围:1~16
* @param Number 要显示的数字,范围:0~0xFFFFFFFF
* @param Length 要显示数字的长度,范围:1~8
* @retval 无
*/
void OLED_ShowHexNum(uint8_t Line, uint8_t Column, uint32_t Number, uint8_t Length)
{
uint8_t i, SingleNumber;
for (i = 0; i < Length; i++)
{
SingleNumber = Number / OLED_Pow(16, Length - i - 1) % 16;
if (SingleNumber < 10)
{
OLED_ShowChar(Line, Column + i, SingleNumber + '0');
}
else
{
OLED_ShowChar(Line, Column + i, SingleNumber - 10 + 'A');
}
}
}
/**
* @brief OLED显示数字(二进制,正数)
* @param Line 起始行位置,范围:1~4
* @param Column 起始列位置,范围:1~16
* @param Number 要显示的数字,范围:0~1111 1111 1111 1111
* @param Length 要显示数字的长度,范围:1~16
* @retval 无
*/
void OLED_ShowBinNum(uint8_t Line, uint8_t Column, uint32_t Number, uint8_t Length)
{
uint8_t i;
for (i = 0; i < Length; i++)
{
OLED_ShowChar(Line, Column + i, Number / OLED_Pow(2, Length - i - 1) % 2 + '0');
}
}
/**
* @brief OLED初始化
* @param 无
* @retval 无
*/
void OLED_Init(void)
{
uint32_t i, j;
for (i = 0; i < 1000; i++) //上电延时
{
for (j = 0; j < 1000; j++);
}
OLED_I2C_Init(); //端口初始化
OLED_WriteCommand(0xAE); //关闭显示
OLED_WriteCommand(0xD5); //设置显示时钟分频比/振荡器频率
OLED_WriteCommand(0x80);
OLED_WriteCommand(0xA8); //设置多路复用率
OLED_WriteCommand(0x3F);
OLED_WriteCommand(0xD3); //设置显示偏移
OLED_WriteCommand(0x00);
OLED_WriteCommand(0x40); //设置显示开始行
OLED_WriteCommand(0xA1); //设置左右方向,0xA1正常 0xA0左右反置
OLED_WriteCommand(0xC8); //设置上下方向,0xC8正常 0xC0上下反置
OLED_WriteCommand(0xDA); //设置COM引脚硬件配置
OLED_WriteCommand(0x12);
OLED_WriteCommand(0x81); //设置对比度控制
OLED_WriteCommand(0xCF);
OLED_WriteCommand(0xD9); //设置预充电周期
OLED_WriteCommand(0xF1);
OLED_WriteCommand(0xDB); //设置VCOMH取消选择级别
OLED_WriteCommand(0x30);
OLED_WriteCommand(0xA4); //设置整个显示打开/关闭
OLED_WriteCommand(0xA6); //设置正常/倒转显示
OLED_WriteCommand(0x8D); //设置充电泵
OLED_WriteCommand(0x14);
OLED_WriteCommand(0xAF); //开启显示
OLED_Clear(); //OLED清屏
}
oled.h
#ifndef __OLED_H
#define __OLED_H
void OLED_Init(void);
void OLED_Clear(void);
void OLED_ShowChar(uint8_t Line, uint8_t Column, char Char);
void OLED_ShowString(uint8_t Line, uint8_t Column, char *String);
void OLED_ShowNum(uint8_t Line, uint8_t Column, uint32_t Number, uint8_t Length);
void OLED_ShowSignedNum(uint8_t Line, uint8_t Column, int32_t Number, uint8_t Length);
void OLED_ShowHexNum(uint8_t Line, uint8_t Column, uint32_t Number, uint8_t Length);
void OLED_ShowBinNum(uint8_t Line, uint8_t Column, uint32_t Number, uint8_t Length);
#endif
oled_Font.h
#ifndef __OLED_FONT_H
#define __OLED_FONT_H
/*OLED字模库,宽8像素,高16像素*/
const uint8_t OLED_F8x16[][16]=
{
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,// 0
0x00,0x00,0x00,0xF8,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x33,0x30,0x00,0x00,0x00,//! 1
0x00,0x10,0x0C,0x06,0x10,0x0C,0x06,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,//" 2
0x40,0xC0,0x78,0x40,0xC0,0x78,0x40,0x00,
0x04,0x3F,0x04,0x04,0x3F,0x04,0x04,0x00,//# 3
0x00,0x70,0x88,0xFC,0x08,0x30,0x00,0x00,
0x00,0x18,0x20,0xFF,0x21,0x1E,0x00,0x00,//$ 4
0xF0,0x08,0xF0,0x00,0xE0,0x18,0x00,0x00,
0x00,0x21,0x1C,0x03,0x1E,0x21,0x1E,0x00,//% 5
0x00,0xF0,0x08,0x88,0x70,0x00,0x00,0x00,
0x1E,0x21,0x23,0x24,0x19,0x27,0x21,0x10,//& 6
0x10,0x16,0x0E,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,//' 7
0x00,0x00,0x00,0xE0,0x18,0x04,0x02,0x00,
0x00,0x00,0x00,0x07,0x18,0x20,0x40,0x00,//( 8
0x00,0x02,0x04,0x18,0xE0,0x00,0x00,0x00,
0x00,0x40,0x20,0x18,0x07,0x00,0x00,0x00,//) 9
0x40,0x40,0x80,0xF0,0x80,0x40,0x40,0x00,
0x02,0x02,0x01,0x0F,0x01,0x02,0x02,0x00,//* 10
0x00,0x00,0x00,0xF0,0x00,0x00,0x00,0x00,
0x01,0x01,0x01,0x1F,0x01,0x01,0x01,0x00,//+ 11
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x80,0xB0,0x70,0x00,0x00,0x00,0x00,0x00,//, 12
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x01,0x01,0x01,0x01,0x01,0x01,0x01,//- 13
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x30,0x30,0x00,0x00,0x00,0x00,0x00,//. 14
0x00,0x00,0x00,0x00,0x80,0x60,0x18,0x04,
0x00,0x60,0x18,0x06,0x01,0x00,0x00,0x00,/// 15
0x00,0xE0,0x10,0x08,0x08,0x10,0xE0,0x00,
0x00,0x0F,0x10,0x20,0x20,0x10,0x0F,0x00,//0 16
0x00,0x10,0x10,0xF8,0x00,0x00,0x00,0x00,
0x00,0x20,0x20,0x3F,0x20,0x20,0x00,0x00,//1 17
0x00,0x70,0x08,0x08,0x08,0x88,0x70,0x00,
0x00,0x30,0x28,0x24,0x22,0x21,0x30,0x00,//2 18
0x00,0x30,0x08,0x88,0x88,0x48,0x30,0x00,
0x00,0x18,0x20,0x20,0x20,0x11,0x0E,0x00,//3 19
0x00,0x00,0xC0,0x20,0x10,0xF8,0x00,0x00,
0x00,0x07,0x04,0x24,0x24,0x3F,0x24,0x00,//4 20
0x00,0xF8,0x08,0x88,0x88,0x08,0x08,0x00,
0x00,0x19,0x21,0x20,0x20,0x11,0x0E,0x00,//5 21
0x00,0xE0,0x10,0x88,0x88,0x18,0x00,0x00,
0x00,0x0F,0x11,0x20,0x20,0x11,0x0E,0x00,//6 22
0x00,0x38,0x08,0x08,0xC8,0x38,0x08,0x00,
0x00,0x00,0x00,0x3F,0x00,0x00,0x00,0x00,//7 23
0x00,0x70,0x88,0x08,0x08,0x88,0x70,0x00,
0x00,0x1C,0x22,0x21,0x21,0x22,0x1C,0x00,//8 24
0x00,0xE0,0x10,0x08,0x08,0x10,0xE0,0x00,
0x00,0x00,0x31,0x22,0x22,0x11,0x0F,0x00,//9 25
0x00,0x00,0x00,0xC0,0xC0,0x00,0x00,0x00,
0x00,0x00,0x00,0x30,0x30,0x00,0x00,0x00,//: 26
0x00,0x00,0x00,0x80,0x00,0x00,0x00,0x00,
0x00,0x00,0x80,0x60,0x00,0x00,0x00,0x00,//; 27
0x00,0x00,0x80,0x40,0x20,0x10,0x08,0x00,
0x00,0x01,0x02,0x04,0x08,0x10,0x20,0x00,//< 28
0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x00,
0x04,0x04,0x04,0x04,0x04,0x04,0x04,0x00,//= 29
0x00,0x08,0x10,0x20,0x40,0x80,0x00,0x00,
0x00,0x20,0x10,0x08,0x04,0x02,0x01,0x00,//> 30
0x00,0x70,0x48,0x08,0x08,0x08,0xF0,0x00,
0x00,0x00,0x00,0x30,0x36,0x01,0x00,0x00,//? 31
0xC0,0x30,0xC8,0x28,0xE8,0x10,0xE0,0x00,
0x07,0x18,0x27,0x24,0x23,0x14,0x0B,0x00,//@ 32
0x00,0x00,0xC0,0x38,0xE0,0x00,0x00,0x00,
0x20,0x3C,0x23,0x02,0x02,0x27,0x38,0x20,//A 33
0x08,0xF8,0x88,0x88,0x88,0x70,0x00,0x00,
0x20,0x3F,0x20,0x20,0x20,0x11,0x0E,0x00,//B 34
0xC0,0x30,0x08,0x08,0x08,0x08,0x38,0x00,
0x07,0x18,0x20,0x20,0x20,0x10,0x08,0x00,//C 35
0x08,0xF8,0x08,0x08,0x08,0x10,0xE0,0x00,
0x20,0x3F,0x20,0x20,0x20,0x10,0x0F,0x00,//D 36
0x08,0xF8,0x88,0x88,0xE8,0x08,0x10,0x00,
0x20,0x3F,0x20,0x20,0x23,0x20,0x18,0x00,//E 37
0x08,0xF8,0x88,0x88,0xE8,0x08,0x10,0x00,
0x20,0x3F,0x20,0x00,0x03,0x00,0x00,0x00,//F 38
0xC0,0x30,0x08,0x08,0x08,0x38,0x00,0x00,
0x07,0x18,0x20,0x20,0x22,0x1E,0x02,0x00,//G 39
0x08,0xF8,0x08,0x00,0x00,0x08,0xF8,0x08,
0x20,0x3F,0x21,0x01,0x01,0x21,0x3F,0x20,//H 40
0x00,0x08,0x08,0xF8,0x08,0x08,0x00,0x00,
0x00,0x20,0x20,0x3F,0x20,0x20,0x00,0x00,//I 41
0x00,0x00,0x08,0x08,0xF8,0x08,0x08,0x00,
0xC0,0x80,0x80,0x80,0x7F,0x00,0x00,0x00,//J 42
0x08,0xF8,0x88,0xC0,0x28,0x18,0x08,0x00,
0x20,0x3F,0x20,0x01,0x26,0x38,0x20,0x00,//K 43
0x08,0xF8,0x08,0x00,0x00,0x00,0x00,0x00,
0x20,0x3F,0x20,0x20,0x20,0x20,0x30,0x00,//L 44
0x08,0xF8,0xF8,0x00,0xF8,0xF8,0x08,0x00,
0x20,0x3F,0x00,0x3F,0x00,0x3F,0x20,0x00,//M 45
0x08,0xF8,0x30,0xC0,0x00,0x08,0xF8,0x08,
0x20,0x3F,0x20,0x00,0x07,0x18,0x3F,0x00,//N 46
0xE0,0x10,0x08,0x08,0x08,0x10,0xE0,0x00,
0x0F,0x10,0x20,0x20,0x20,0x10,0x0F,0x00,//O 47
0x08,0xF8,0x08,0x08,0x08,0x08,0xF0,0x00,
0x20,0x3F,0x21,0x01,0x01,0x01,0x00,0x00,//P 48
0xE0,0x10,0x08,0x08,0x08,0x10,0xE0,0x00,
0x0F,0x18,0x24,0x24,0x38,0x50,0x4F,0x00,//Q 49
0x08,0xF8,0x88,0x88,0x88,0x88,0x70,0x00,
0x20,0x3F,0x20,0x00,0x03,0x0C,0x30,0x20,//R 50
0x00,0x70,0x88,0x08,0x08,0x08,0x38,0x00,
0x00,0x38,0x20,0x21,0x21,0x22,0x1C,0x00,//S 51
0x18,0x08,0x08,0xF8,0x08,0x08,0x18,0x00,
0x00,0x00,0x20,0x3F,0x20,0x00,0x00,0x00,//T 52
0x08,0xF8,0x08,0x00,0x00,0x08,0xF8,0x08,
0x00,0x1F,0x20,0x20,0x20,0x20,0x1F,0x00,//U 53
0x08,0x78,0x88,0x00,0x00,0xC8,0x38,0x08,
0x00,0x00,0x07,0x38,0x0E,0x01,0x00,0x00,//V 54
0xF8,0x08,0x00,0xF8,0x00,0x08,0xF8,0x00,
0x03,0x3C,0x07,0x00,0x07,0x3C,0x03,0x00,//W 55
0x08,0x18,0x68,0x80,0x80,0x68,0x18,0x08,
0x20,0x30,0x2C,0x03,0x03,0x2C,0x30,0x20,//X 56
0x08,0x38,0xC8,0x00,0xC8,0x38,0x08,0x00,
0x00,0x00,0x20,0x3F,0x20,0x00,0x00,0x00,//Y 57
0x10,0x08,0x08,0x08,0xC8,0x38,0x08,0x00,
0x20,0x38,0x26,0x21,0x20,0x20,0x18,0x00,//Z 58
0x00,0x00,0x00,0xFE,0x02,0x02,0x02,0x00,
0x00,0x00,0x00,0x7F,0x40,0x40,0x40,0x00,//[ 59
0x00,0x0C,0x30,0xC0,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x01,0x06,0x38,0xC0,0x00,//\ 60
0x00,0x02,0x02,0x02,0xFE,0x00,0x00,0x00,
0x00,0x40,0x40,0x40,0x7F,0x00,0x00,0x00,//] 61
0x00,0x00,0x04,0x02,0x02,0x02,0x04,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,//^ 62
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,//_ 63
0x00,0x02,0x02,0x04,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,//` 64
0x00,0x00,0x80,0x80,0x80,0x80,0x00,0x00,
0x00,0x19,0x24,0x22,0x22,0x22,0x3F,0x20,//a 65
0x08,0xF8,0x00,0x80,0x80,0x00,0x00,0x00,
0x00,0x3F,0x11,0x20,0x20,0x11,0x0E,0x00,//b 66
0x00,0x00,0x00,0x80,0x80,0x80,0x00,0x00,
0x00,0x0E,0x11,0x20,0x20,0x20,0x11,0x00,//c 67
0x00,0x00,0x00,0x80,0x80,0x88,0xF8,0x00,
0x00,0x0E,0x11,0x20,0x20,0x10,0x3F,0x20,//d 68
0x00,0x00,0x80,0x80,0x80,0x80,0x00,0x00,
0x00,0x1F,0x22,0x22,0x22,0x22,0x13,0x00,//e 69
0x00,0x80,0x80,0xF0,0x88,0x88,0x88,0x18,
0x00,0x20,0x20,0x3F,0x20,0x20,0x00,0x00,//f 70
0x00,0x00,0x80,0x80,0x80,0x80,0x80,0x00,
0x00,0x6B,0x94,0x94,0x94,0x93,0x60,0x00,//g 71
0x08,0xF8,0x00,0x80,0x80,0x80,0x00,0x00,
0x20,0x3F,0x21,0x00,0x00,0x20,0x3F,0x20,//h 72
0x00,0x80,0x98,0x98,0x00,0x00,0x00,0x00,
0x00,0x20,0x20,0x3F,0x20,0x20,0x00,0x00,//i 73
0x00,0x00,0x00,0x80,0x98,0x98,0x00,0x00,
0x00,0xC0,0x80,0x80,0x80,0x7F,0x00,0x00,//j 74
0x08,0xF8,0x00,0x00,0x80,0x80,0x80,0x00,
0x20,0x3F,0x24,0x02,0x2D,0x30,0x20,0x00,//k 75
0x00,0x08,0x08,0xF8,0x00,0x00,0x00,0x00,
0x00,0x20,0x20,0x3F,0x20,0x20,0x00,0x00,//l 76
0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x00,
0x20,0x3F,0x20,0x00,0x3F,0x20,0x00,0x3F,//m 77
0x80,0x80,0x00,0x80,0x80,0x80,0x00,0x00,
0x20,0x3F,0x21,0x00,0x00,0x20,0x3F,0x20,//n 78
0x00,0x00,0x80,0x80,0x80,0x80,0x00,0x00,
0x00,0x1F,0x20,0x20,0x20,0x20,0x1F,0x00,//o 79
0x80,0x80,0x00,0x80,0x80,0x00,0x00,0x00,
0x80,0xFF,0xA1,0x20,0x20,0x11,0x0E,0x00,//p 80
0x00,0x00,0x00,0x80,0x80,0x80,0x80,0x00,
0x00,0x0E,0x11,0x20,0x20,0xA0,0xFF,0x80,//q 81
0x80,0x80,0x80,0x00,0x80,0x80,0x80,0x00,
0x20,0x20,0x3F,0x21,0x20,0x00,0x01,0x00,//r 82
0x00,0x00,0x80,0x80,0x80,0x80,0x80,0x00,
0x00,0x33,0x24,0x24,0x24,0x24,0x19,0x00,//s 83
0x00,0x80,0x80,0xE0,0x80,0x80,0x00,0x00,
0x00,0x00,0x00,0x1F,0x20,0x20,0x00,0x00,//t 84
0x80,0x80,0x00,0x00,0x00,0x80,0x80,0x00,
0x00,0x1F,0x20,0x20,0x20,0x10,0x3F,0x20,//u 85
0x80,0x80,0x80,0x00,0x00,0x80,0x80,0x80,
0x00,0x01,0x0E,0x30,0x08,0x06,0x01,0x00,//v 86
0x80,0x80,0x00,0x80,0x00,0x80,0x80,0x80,
0x0F,0x30,0x0C,0x03,0x0C,0x30,0x0F,0x00,//w 87
0x00,0x80,0x80,0x00,0x80,0x80,0x80,0x00,
0x00,0x20,0x31,0x2E,0x0E,0x31,0x20,0x00,//x 88
0x80,0x80,0x80,0x00,0x00,0x80,0x80,0x80,
0x80,0x81,0x8E,0x70,0x18,0x06,0x01,0x00,//y 89
0x00,0x80,0x80,0x80,0x80,0x80,0x80,0x00,
0x00,0x21,0x30,0x2C,0x22,0x21,0x30,0x00,//z 90
0x00,0x00,0x00,0x00,0x80,0x7C,0x02,0x02,
0x00,0x00,0x00,0x00,0x00,0x3F,0x40,0x40,//{ 91
0x00,0x00,0x00,0x00,0xFF,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0xFF,0x00,0x00,0x00,//| 92
0x00,0x02,0x02,0x7C,0x80,0x00,0x00,0x00,
0x00,0x40,0x40,0x3F,0x00,0x00,0x00,0x00,//} 93
0x00,0x06,0x01,0x01,0x02,0x02,0x04,0x04,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,//~ 94
};
#endif
main.c
#include "stm32f10x.h" // Device header
#include "MyConfig.h"
//#include "stdio.h"
extern int16_t TargerNum;
extern int16_t Find_Task;
extern int16_t LoR;
int main(void)
{
Usart1_Init(115200);
OLED_Init();
OLED_ShowString(1,1,"TargerNum:");
OLED_ShowString(2,1,"LoR:");
OLED_ShowString(3,1,"Find_Task: ");
while (1)
{
OLED_ShowNum(1,11,TargerNum,2);
OLED_ShowNum(2,5,LoR,2);
OLED_ShowNum(3,11,Find_Task,2);
}
}
六、完整代码2(stm32端发送openmv接收)
1.stm32端
#include "stm32f10x.h" // Device header
#include "MyConfig.h"
//#include "stdio.h"
uint8_t RoadLineCheck[2] = {0,0};
uint8_t RoadLine;
extern int16_t TargerNum;
extern int16_t Find_Task;
extern int16_t LoR;
void Usart1_Sendata(u8 * str)
{
u8 i = 0;
USART_SendData(USART1,0x0d);
while( USART_GetFlagStatus(USART1,USART_FLAG_TC)!= SET);
for(i = 0;i < 2;i++)
{
USART_SendData(USART1,str[i]);
while( USART_GetFlagStatus(USART1,USART_FLAG_TC)!= SET);
}
USART_SendData(USART1,0x5b);
while( USART_GetFlagStatus(USART1,USART_FLAG_TC)!= SET);
}
int main(void)
{
NVIC_Config();
Usart1_Init(115200);
Find_Task=2;
u8 send_buff[2] = {TargerNum,Find_Task};
while (1)
{
Usart1_Sendata(send_buff);
}
}
2.openmv端
import time, image,sensor,math,pyb,ustruct
from image import SEARCH_EX, SEARCH_DS
from pyb import Pin, Timer,LED
#从imgae模块引入SEARCH_EX和SEARCH_DS。使用from import仅仅引入SEARCH_EX,
#SEARCH_DS两个需要的部分,而不把image模块全部引入。
sensor.reset()
# Set sensor settings
sensor.set_contrast(1)
sensor.set_gainceiling(16)
# Max resolution for template matching with SEARCH_EX is QQVGA
sensor.set_framesize(sensor.QQVGA)
# You can set windowing to reduce the search image.
sensor.set_pixformat(sensor.GRAYSCALE)
sensor.set_windowing(0, 40, 160, 40) #观察窗口 后面ROI设置也会以这个为新的基准
rx_buff=[]
state = 0
tx_flag = 0
x = 0
Find_Task =1 #1
Target_Num =0
data = [0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00]
uart = pyb.UART(3, 115200, timeout_char = 1000) #定义串口1变量
blue_led = LED(2)
########串口接收数据函数处理#########
def Receive_Prepare(): #data
global state
global x
global tx_flag
global data
global Find_Task
global Target_Num
if state==0:
data[0]=uart.readchar()
if data[0] == 0x0d:#帧头
state = 1
else:
state = 0
rx_buff.clear()
elif state==1:
data[1]=uart.readchar()
Target_Num=data[x+1]
state = 2
elif state==2:
data[2]=uart.readchar()
Find_Task=data[x+2]
state = 3
elif state == 3:
data[4]=uart.readchar()
if data[4] == 0x5b:
state = 4
elif state == 4:
state=0
else:
state = 0
rx_buff.clear()
clock = time.clock()
# Run template matching
while (True):
clock.tick()
img = sensor.snapshot()# 镜头初始化
if(uart.any()>0):
Receive_Prepare()
print(clock.fps(),Find_Task, Target_Num)
总结
这里对文章进行总结:
个人认为这套代码比较通俗易懂,稍微读懂一点直接移植就好(可能需要根据实际略微修改)。
要移植的话最好选择完整代码这边文章来源:https://www.toymoban.com/news/detail-582711.html
stm32端用的是串口1,openmv端用的是串口3;
固定包长并不是只能三个或者两个数据位,是代码编写设置好的不超过缓存区的数据位是自定义的,只是运用的时候会根据设置好的数据位发送/接收。文章来源地址https://www.toymoban.com/news/detail-582711.html
到了这里,关于stm32与openmv的相互发送与接收(基于标准库)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!