【机器学习】基于卷积神经网络 CNN 的猫狗分类问题

这篇具有很好参考价值的文章主要介绍了【机器学习】基于卷积神经网络 CNN 的猫狗分类问题。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。



一、卷积神经网络的介绍

1.1 什么是卷积神经网络

卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),是深度学习(deep learning)的代表算法之一。
顾名思义,就是将卷积与前馈神经网络结合,所衍生出来的一种深度学习算法。

卷积神经网络CNN的结构图
【机器学习】基于卷积神经网络 CNN 的猫狗分类问题,机器学习,cnn,分类

1.2 重要层的说明

【机器学习】基于卷积神经网络 CNN 的猫狗分类问题,机器学习,cnn,分类
上面图中是33的卷积核(卷积核一般采用33和2*2 )与上一层的结果(输入层)进行卷积的过程
②池化层
【机器学习】基于卷积神经网络 CNN 的猫狗分类问题,机器学习,cnn,分类
最大池化,它只是输出在区域中观察到的最大输入值
均值池化,它只是输出在区域中观察到的平均输入值
两者最大区别在于卷积核的不同(池化是一种特殊的卷积过程)
③全连接层
【机器学习】基于卷积神经网络 CNN 的猫狗分类问题,机器学习,cnn,分类
全连接过程,跟神经网络一样,就是每个神经元与上一层的所有神经元相连
输出层:

卷积神经网络中输出层的上游通常是全连接层,因此其结构和工作原理与传统前馈神经网络中的输出层相同。
对于图像分类问题,输出层使用逻辑函数或归一化指数函数(softmax function)输出分类标签。
在物体识别(object detection)问题中,输出层可设计为输出物体的中心坐标、大小和分类。
在图像语义分割中,输出层直接输出每个像素的分类结果。

1.3 应用领域

  • 计算机视觉
    图像识别
    物体识别
    行为认知
    姿态估计
    神经风格迁移
  • 自然语言处理
  • 其它
    物理学
    遥感科学
    大气科学
    卷积神经网络在计算机视觉识别上的全过程,如下图所示:
    【机器学习】基于卷积神经网络 CNN 的猫狗分类问题,机器学习,cnn,分类

二、 软件、环境配置

2.1 安装Anaconda

参考:https://blog.csdn.net/ssj925319/article/details/114947425

2.2 环境准备

  • 打开 cmd 命令终端,创建虚拟环境。
conda create -n tf1 python=3.6

【机器学习】基于卷积神经网络 CNN 的猫狗分类问题,机器学习,cnn,分类

  • 激活环境:
activate
conda activate tf1
  • 安装 tensorflow、keras 库。
  • 在新建的虚拟环境 tf1 内,使用以下命令安装两个库:
pip install tensorflow==1.14.0 -i “https://pypi.doubanio.com/simple/”
pip install keras==2.2.5 -i “https://pypi.doubanio.com/simple/”

  • 安装 nb_conda_kernels 包。
conda install nb_conda_kernels

【机器学习】基于卷积神经网络 CNN 的猫狗分类问题,机器学习,cnn,分类

  • 重新打开 Jupyter Notebook(tf1)环境下的。

【机器学习】基于卷积神经网络 CNN 的猫狗分类问题,机器学习,cnn,分类

  • 点击【New】→【Python[tf1环境下的]】创建 python 文件。

【机器学习】基于卷积神经网络 CNN 的猫狗分类问题,机器学习,cnn,分类

三、猫狗分类示例

3.1 图像数据预处理

对猫狗图像进行分类,代码如下:

import os, shutil 
# 原始目录所在的路径
original_dataset_dir = 'E:\\Cat_And_Dog\\train\\'

# 数据集分类后的目录
base_dir = 'E:\\Cat_And_Dog\\train1'
os.mkdir(base_dir)

# # 训练、验证、测试数据集的目录
train_dir = os.path.join(base_dir, 'train')
os.mkdir(train_dir)
validation_dir = os.path.join(base_dir, 'validation')
os.mkdir(validation_dir)
test_dir = os.path.join(base_dir, 'test')
os.mkdir(test_dir)

# 猫训练图片所在目录
train_cats_dir = os.path.join(train_dir, 'cats')
os.mkdir(train_cats_dir)

# 狗训练图片所在目录
train_dogs_dir = os.path.join(train_dir, 'dogs')
os.mkdir(train_dogs_dir)

# 猫验证图片所在目录
validation_cats_dir = os.path.join(validation_dir, 'cats')
os.mkdir(validation_cats_dir)

# 狗验证数据集所在目录
validation_dogs_dir = os.path.join(validation_dir, 'dogs')
os.mkdir(validation_dogs_dir)

# 猫测试数据集所在目录
test_cats_dir = os.path.join(test_dir, 'cats')
os.mkdir(test_cats_dir)

# 狗测试数据集所在目录
test_dogs_dir = os.path.join(test_dir, 'dogs')
os.mkdir(test_dogs_dir)

# 将前1000张猫图像复制到train_cats_dir
fnames = ['cat.{}.jpg'.format(i) for i in range(1000)]
for fname in fnames:
    src = os.path.join(original_dataset_dir, fname)
    dst = os.path.join(train_cats_dir, fname)
    shutil.copyfile(src, dst)

# 将下500张猫图像复制到validation_cats_dir
fnames = ['cat.{}.jpg'.format(i) for i in range(1000, 1500)]
for fname in fnames:
    src = os.path.join(original_dataset_dir, fname)
    dst = os.path.join(validation_cats_dir, fname)
    shutil.copyfile(src, dst)
    
# 将下500张猫图像复制到test_cats_dir
fnames = ['cat.{}.jpg'.format(i) for i in range(1500, 2000)]
for fname in fnames:
    src = os.path.join(original_dataset_dir, fname)
    dst = os.path.join(test_cats_dir, fname)
    shutil.copyfile(src, dst)
    
# 将前1000张狗图像复制到train_dogs_dir
fnames = ['dog.{}.jpg'.format(i) for i in range(1000)]
for fname in fnames:
    src = os.path.join(original_dataset_dir, fname)
    dst = os.path.join(train_dogs_dir, fname)
    shutil.copyfile(src, dst)
    
# 将下500张狗图像复制到validation_dogs_dir
fnames = ['dog.{}.jpg'.format(i) for i in range(1000, 1500)]
for fname in fnames:
    src = os.path.join(original_dataset_dir, fname)
    dst = os.path.join(validation_dogs_dir, fname)
    shutil.copyfile(src, dst)
    
# 将下500张狗图像复制到test_dogs_dir
fnames = ['dog.{}.jpg'.format(i) for i in range(1500, 2000)]
for fname in fnames:
    src = os.path.join(original_dataset_dir, fname)
    dst = os.path.join(test_dogs_dir, fname)
    shutil.copyfile(src, dst)

分类后如下图所示:
【机器学习】基于卷积神经网络 CNN 的猫狗分类问题,机器学习,cnn,分类
【机器学习】基于卷积神经网络 CNN 的猫狗分类问题,机器学习,cnn,分类

查看分类后,对应目录下的图片数量:

#输出数据集对应目录下图片数量
print('total training cat images:', len(os.listdir(train_cats_dir)))
print('total training dog images:', len(os.listdir(train_dogs_dir)))
print('total validation cat images:', len(os.listdir(validation_cats_dir)))
print('total validation dog images:', len(os.listdir(validation_dogs_dir)))
print('total test cat images:', len(os.listdir(test_cats_dir)))
print('total test dog images:', len(os.listdir(test_dogs_dir)))

【机器学习】基于卷积神经网络 CNN 的猫狗分类问题,机器学习,cnn,分类
猫狗训练图片各 1000 张,验证图片各 500 张,测试图片各 500 张。

3.2 基准模型

第①步:构建网络模型:

#网络模型构建
from keras import layers
from keras import models
#keras的序贯模型
model = models.Sequential()
#卷积层,卷积核是3*3,激活函数relu
model.add(layers.Conv2D(32, (3, 3), activation='relu',
                        input_shape=(150, 150, 3)))
#最大池化层
model.add(layers.MaxPooling2D((2, 2)))
#卷积层,卷积核2*2,激活函数relu
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
#最大池化层
model.add(layers.MaxPooling2D((2, 2)))
#卷积层,卷积核是3*3,激活函数relu
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
#最大池化层
model.add(layers.MaxPooling2D((2, 2)))
#卷积层,卷积核是3*3,激活函数relu
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
#最大池化层
model.add(layers.MaxPooling2D((2, 2)))
#flatten层,用于将多维的输入一维化,用于卷积层和全连接层的过渡
model.add(layers.Flatten())
#全连接,激活函数relu
model.add(layers.Dense(512, activation='relu'))
#全连接,激活函数sigmoid
model.add(layers.Dense(1, activation='sigmoid'))

查看模型各层的参数状况:

#输出模型各层的参数状况
model.summary()

结果如下:
【机器学习】基于卷积神经网络 CNN 的猫狗分类问题,机器学习,cnn,分类
第②步:配置优化器:
loss:计算损失,这里用的是交叉熵损失
metrics:列表,包含评估模型在训练和测试时的性能的指标

from keras import optimizers

model.compile(loss='binary_crossentropy',
              optimizer=optimizers.RMSprop(lr=1e-4),
              metrics=['acc'])

第③步:图片格式转化
所有图片(2000张)重设尺寸大小为 150x150 大小,并使用 ImageDataGenerator 工具将本地图片 .jpg 格式转化成 RGB 像素网格,再转化成浮点张量上传到网络上。

from keras.preprocessing.image import ImageDataGenerator

# 所有图像将按1/255重新缩放
train_datagen = ImageDataGenerator(rescale=1./255)
test_datagen = ImageDataGenerator(rescale=1./255)

train_generator = train_datagen.flow_from_directory(
        # 这是目标目录
        train_dir,
        # 所有图像将调整为150x150
        target_size=(150, 150),
        batch_size=20,
        # 因为我们使用二元交叉熵损失,我们需要二元标签
        class_mode='binary')

validation_generator = test_datagen.flow_from_directory(
        validation_dir,
        target_size=(150, 150),
        batch_size=20,
        class_mode='binary')

输出结果:
【机器学习】基于卷积神经网络 CNN 的猫狗分类问题,机器学习,cnn,分类
查看上述图像预处理过程中生成器的输出,

#查看上面对于图片预处理的处理结果
for data_batch, labels_batch in train_generator:
    print('data batch shape:', data_batch.shape)
    print('labels batch shape:', labels_batch.shape)
    break

如果出现错误:ImportError: Could not import PIL.Image. The use of load_img requires PIL,是因为没有安装 pillow 库导致的,使用如下命令在 tf1 虚拟环境中安装:

pip install pillow -i “https://pypi.doubanio.com/simple/”

安装完毕后,关闭 Jupyter Notebook 重新打开,重新运行一遍程序即可。
输出结果如下:

【机器学习】基于卷积神经网络 CNN 的猫狗分类问题,机器学习,cnn,分类
第④步:开始训练模型。

#模型训练过程
history = model.fit_generator(
      train_generator,
      steps_per_epoch=100,
      epochs=30,
      validation_data=validation_generator,
      validation_steps=50)

电脑性能越好,它训练得越快。

【机器学习】基于卷积神经网络 CNN 的猫狗分类问题,机器学习,cnn,分类
第⑤步:保存模型。

#保存训练得到的的模型
model.save('G:\\Cat_And_Dog\\kaggle\\cats_and_dogs_small_1.h5')

第⑥步:结果可视化(需要在 tf1 虚拟环境中安装 matplotlib 库,命令:pip install matplotlib -i “https://pypi.doubanio.com/simple/”)。

#对于模型进行评估,查看预测的准确性
import matplotlib.pyplot as plt

acc = history.history['acc']
val_acc = history.history['val_acc']
loss = history.history['loss']
val_loss = history.history['val_loss']

epochs = range(len(acc))

plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Training and validation accuracy')
plt.legend()

plt.figure()

plt.plot(epochs, loss, 'bo', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.legend()

plt.show()

【机器学习】基于卷积神经网络 CNN 的猫狗分类问题,机器学习,cnn,分类
训练结果如上图所示,很明显模型上来就过拟合了,主要原因是数据不够,或者说相对于数据量,模型过复杂(训练损失在第30个epoch就降为0了),训练精度随着时间线性增长,直到接近100%,而我们的验证精度停留在70-72%。我们的验证损失在5个epoch后达到最小,然后停止,而训练损失继续线性下降,直到接近0。
这里先解释下什么是过拟合?
过拟合的定义: 给定一个假设空间 H HH,一个假设 h hh 属于 H HH,如果存在其他的假设 h ’ h’h’ 属于 H HH,使得在训练样例上 h hh 的错误率比 h ’ h’h’ 小,但在整个实例分布上 h ’ h’h’ 比 h hh 的错误率小,那么就说假设 h hh 过度拟合训练数据。
举个简单的例子,( a )( b )过拟合,( c )( d )不过拟合,如下图所示:
【机器学习】基于卷积神经网络 CNN 的猫狗分类问题,机器学习,cnn,分类

过拟合常见解决方法:
(1)在神经网络模型中,可使用权值衰减的方法,即每次迭代过程中以某个小因子降低每个权值。
(2)选取合适的停止训练标准,使对机器的训练在合适的程度;
(3)保留验证数据集,对训练成果进行验证;
(4)获取额外数据进行交叉验证;
(5)正则化,即在进行目标函数或代价函数优化时,在目标函数或代价函数后面加上一个正则项,一般有L1正则与L2正则等。
不过接下来将使用一种新的方法,专门针对计算机视觉,在深度学习模型处理图像时几乎普遍使用——数据增强。

3.3 数据增强

数据集增强主要是为了减少网络的过拟合现象,通过对训练图片进行变换可以得到泛化能力更强的网络,更好的适应应用场景。

重新构建模型:

上面建完的模型就保留着,我们重新建一个 .ipynb 文件,重新开始建模。
首先猫狗图像预处理,只不过这里将分类好的数据集放在 train2 文件夹中,其它的都一样。

【机器学习】基于卷积神经网络 CNN 的猫狗分类问题,机器学习,cnn,分类

然后配置网络模型、构建优化器,然后进行数据增强,代码如下:
图像数据生成器增强数据:

from keras.preprocessing.image import ImageDataGenerator
datagen = ImageDataGenerator(
      rotation_range=40,
      width_shift_range=0.2,
      height_shift_range=0.2,
      shear_range=0.2,
      zoom_range=0.2,
      horizontal_flip=True,
      fill_mode='nearest')

查看数据增强后的效果:

import matplotlib.pyplot as plt
# This is module with image preprocessing utilities
from keras.preprocessing import image
fnames = [os.path.join(train_cats_dir, fname) for fname in os.listdir(train_cats_dir)]
# We pick one image to "augment"
img_path = fnames[3]
# Read the image and resize it
img = image.load_img(img_path, target_size=(150, 150))
# Convert it to a Numpy array with shape (150, 150, 3)
x = image.img_to_array(img)
# Reshape it to (1, 150, 150, 3)
x = x.reshape((1,) + x.shape)
# The .flow() command below generates batches of randomly transformed images.
# It will loop indefinitely, so we need to `break` the loop at some point!
i = 0
for batch in datagen.flow(x, batch_size=1):
    plt.figure(i)
    imgplot = plt.imshow(image.array_to_img(batch[0]))
    i += 1
    if i % 4 == 0:
        break
plt.show()

结果如下(共4张,这里只截取了三张):

【机器学习】基于卷积神经网络 CNN 的猫狗分类问题,机器学习,cnn,分类
图片格式转化。

train_datagen = ImageDataGenerator(
    rescale=1./255,
    rotation_range=40,
    width_shift_range=0.2,
    height_shift_range=0.2,
    shear_range=0.2,
    zoom_range=0.2,
    horizontal_flip=True,)
# Note that the validation data should not be augmented!
test_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
        # This is the target directory
        train_dir,
        # All images will be resized to 150x150
        target_size=(150, 150),
        batch_size=32,
        # Since we use binary_crossentropy loss, we need binary labels
        class_mode='binary')
validation_generator = test_datagen.flow_from_directory(
        validation_dir,
        target_size=(150, 150),
        batch_size=32,
        class_mode='binary')

开始训练并保存结果。

history = model.fit_generator(
      train_generator,
      steps_per_epoch=100,
      epochs=100,
      validation_data=validation_generator,
      validation_steps=50)
model.save('E:\\Cat_And_Dog\\kaggle\\cats_and_dogs_small_2.h5')

训练结果如下:

【机器学习】基于卷积神经网络 CNN 的猫狗分类问题,机器学习,cnn,分类
结果可视化:

acc = history.history['acc']
val_acc = history.history['val_acc']
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs = range(len(acc))
plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Training and validation accuracy')
plt.legend()
plt.figure()
plt.plot(epochs, loss, 'bo', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.legend()
plt.show()

如下图所示:

【机器学习】基于卷积神经网络 CNN 的猫狗分类问题,机器学习,cnn,分类
由于数据量的增加,对比基准模型,可以很明显的观察到曲线没有过度拟合了,训练曲线紧密地跟踪验证曲线,这也就是数据增强带来的影响,但是可以发现它的波动幅度还是比较大的。
下面在此数据增强的基础上,再增加一层 dropout 层,再来训练看看。

3.4 dropout层

什么是dropout层?

Dropout层在神经网络层当中是用来干嘛的呢?它是一种可以用于减少神经网络过拟合的结构,那么它具体是怎么实现的呢?
假设下图是我们用来训练的原始神经网络:

【机器学习】基于卷积神经网络 CNN 的猫狗分类问题,机器学习,cnn,分类
一共有四个输入 x i x_ix
i

,一个输出 y yy。Dropout 则是在每一个 batch 的训练当中随机减掉一些神经元,而作为编程者,我们可以设定每一层 dropout(将神经元去除的的多少)的概率,在设定之后,就可以得到第一个 batch 进行训练的结果:
【机器学习】基于卷积神经网络 CNN 的猫狗分类问题,机器学习,cnn,分类
从上图我们可以看到一些神经元之间断开了连接,因此它们被 dropout 了!dropout顾名思义就是被拿掉的意思,正因为我们在神经网络当中拿掉了一些神经元,所以才叫做 dropout 层。

具体实现:

在数据增强的基础上,再添加一个 dropout 层。

#退出层
model.add(layers.Dropout(0.5))

如下图所示,仅在构建网络模型时添加一层即可,其余部分不变:

【机器学习】基于卷积神经网络 CNN 的猫狗分类问题,机器学习,cnn,分类
再次训练模型,查看训练结果如下:【机器学习】基于卷积神经网络 CNN 的猫狗分类问题,机器学习,cnn,分类
相比于只使用数据增强的效果来看,额外添加一层 dropout 层,仔细对比,可以发现训练曲线更加紧密地跟踪验证曲线,波动的幅度也降低了些,训练效果更棒了。

四、总结

使用卷积神经网络(CNN)实现猫狗分类是一种有效的方法,它能够自动从图像中学习特征并进行分类,提高准确性。

参考链接:
https://blog.csdn.net/qq_43279579/article/details/117298169
https://blog.csdn.net/ssj925319/article/details/117787737
https://www.cnblogs.com/geeksongs/p/13446980.html文章来源地址https://www.toymoban.com/news/detail-582776.html

到了这里,关于【机器学习】基于卷积神经网络 CNN 的猫狗分类问题的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 机器学习实验4——CNN卷积神经网络分类Minst数据集

    基于手写minst数据集,完成关于卷积网络CNN的模型训练、测试与评估。 卷积层 通过使用一组可学习的滤波器(也称为卷积核)对输入图像进行滑动窗口卷积操作,这样可以提取出不同位置的局部特征,从而捕捉到图像的空间结构信息。 激活函数 在卷积层之后,通常会应用一

    2024年01月24日
    浏览(34)
  • 基于卷积神经网络的猫狗识别系统的设计与实现

            通过卷积网络实现猫狗图像的识别。首先,在数据集中抽取训练集和测试集;其次,对图像进行预处理和特征提取,对图像数据进行图像增强,将图像从.jpg格式转化为RGB像素网格,再转化为像素张量;再次,搭建卷积神经网络模型;最后,使用模型进行训练,得

    2024年02月11日
    浏览(32)
  • 【AI机器学习入门与实战】CNN卷积神经网络识别图片验证码案例

    👍【 AI机器学习入门与实战 】目录 🍭 基础篇 🔥 第一篇:【AI机器学习入门与实战】AI 人工智能介绍 🔥 第二篇:【AI机器学习入门与实战】机器学习核心概念理解 🔥 第三篇:【AI机器学习入门与实战】机器学习算法都有哪些分类? 🔥 第四篇:【AI机器学习入门与实战】

    2024年02月02日
    浏览(48)
  • 机器学习-卷积神经网络CNN中的单通道和多通道图片差异

    最近在使用CNN的场景中,既有单通道的图片输入需求,也有多通道的图片输入需求,因此又整理回顾了一下单通道或者多通道卷积的差别,这里记录一下探索过程。 直接给出结论,单通道图片和多通道图片在经历了第一个卷积层以后,就没有单通道或者多通道的区别了,剩下

    2023年04月11日
    浏览(27)
  • 文本分类系统Python,基于深度学习CNN卷积神经网络

    文本分类系统,使用Python作为主要开发语言,通过TensorFlow搭建CNN卷积神经网络对十余种不同种类的文本数据集进行训练,最后得到一个h5格式的本地模型文件,然后采用Django开发网页界面,实现用户在界面中输入一段文字,识别其所属的文本种类。 在我们的日常生活和工作中

    2024年02月08日
    浏览(30)
  • 车牌识别系统Python,基于深度学习CNN卷积神经网络算法

    车牌识别系统,基于Python实现,通过TensorFlow搭建CNN卷积神经网络模型,对车牌数据集图片进行训练最后得到模型,并基于Django框架搭建网页端平台,实现用户在网页端输入一张图片识别其结果,并基于Pyqt5搭建桌面端可视化界面。 在智能交通和车辆监控领域,车牌识别技术扮

    2024年02月07日
    浏览(44)
  • 大数据深度学习:基于Tensorflow深度学习卷积神经网络CNN算法垃圾分类识别系统

    随着社会的发展和城市化进程的加速,垃圾分类已经成为了环境保护和可持续发展的重要课题。然而,传统的垃圾分类方法通常依赖于人工识别,效率低下且易出错。因此,本项目旨在利用大数据和深度学习技术,构建一个基于 TensorFlow 深度学习的神经网络 CNN(Convolutional

    2024年04月14日
    浏览(38)
  • 深度学习实战基础案例——卷积神经网络(CNN)基于SqueezeNet的眼疾识别|第1例

    SqueezeNet是一种轻量且高效的CNN模型,它参数比AlexNet少50倍,但模型性能(accuracy)与AlexNet接近。顾名思义,Squeeze的中文意思是压缩和挤压的意思,所以我们通过算法的名字就可以猜想到,该算法一定是通过压缩模型来降低模型参数量的。当然任何算法的改进都是在原先的基

    2024年02月12日
    浏览(33)
  • 【深度学习&NLP】基于卷积神经网络(CNN)实现中文文本情感分析(分类)附代码以及数据集链接

    【注】:本文所述的实验的完整实现代码包括数据集的仓库链接会在文末给出(建议读者自行配置GPU来加速TensorFlow的相关模型,运行起来会快非常多) 目录 一、研究的背景和目的 二、文本数据集描述 1、数据集来源以及使用目的 2、数据规模、以及如何划分数据集 3、数据集的

    2024年02月04日
    浏览(38)
  • 深度学习|CNN卷积神经网络

    在CNN没有出现前,图像对人工智能来说非常难处理。 主要原因: 图像要处理的数据量太大了。图像由像素组成,每个像素又由不同颜色组成,一张1000×1000彩色RGB图像需要的参数是1000×1000×3,需要三百万参数左右,普通神经网络会全用全连接方法来学习整幅图像上的特征,处

    2024年02月11日
    浏览(34)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包