104. 二叉树的最大深度
递归法
class Solution {
public:
int maxDepth(TreeNode* root) {
if (root == nullptr) return 0;
return max(maxDepth(root->left), maxDepth(root->right)) + 1;
}
};
迭代法
使用层序的方法,相对比较好理解
class Solution {
public:
int maxDepth(TreeNode* root) {
if (!root) return 0;
queue<TreeNode*> que;
que.push(root);
int maxD = 0;
while (!que.empty())
{
int len = que.size();
maxD++;
for (int i = 0; i < len; ++i)
{
TreeNode *cur = que.front();
que.pop();
if (cur->left) que.push(cur->left);
if (cur->right) que.push(cur->right);
}
}
return maxD;
}
};
559. N叉树的最大深度
递归法
class Solution {
public:
int maxDepth(Node* root) {
if (!root) return 0;
int maxD = 0;
for (auto child : root->children)
{
auto childD = maxDepth(child);
if (maxD < childD)
{
maxD = childD;
}
}
return maxD + 1;
}
};
迭代法
跟二叉树的迭代差不多意思。
class Solution {
public:
int maxDepth(Node* root) {
if (!root) return 0;
queue<Node*> que;
que.push(root);
int maxD = 0;
while (!que.empty())
{
int len = que.size();
maxD++;
for (int i = 0; i < len; ++i)
{
Node *cur = que.front();
que.pop();
for (auto child : cur->children)
{
if (child)
{
que.push(child);
}
}
}
}
return maxD;
}
};
111.二叉树的最小深度
要想到是后序遍历
class Solution {
public:
int minDepth(TreeNode* root) {
if (root == nullptr) return 0;
// 应该是后序遍历
if (root->left == nullptr && root->right == nullptr) return 1;
int minD = INT_MAX;
if (root->left) minD = min(minD, minDepth(root->left));
if (root->right) minD = min(minD, minDepth(root->right));
return minD + 1;
}
};
222. 完全二叉树的节点个数
递归法
先计算左右两棵子树的节点数,再加和,用后序遍历的方法
class Solution {
public:
int countNodes(TreeNode* root) {
if (!root) return 0;
int leftCnt = countNodes(root->left);
int rightCnt = countNodes(root->right);
return leftCnt + rightCnt + 1;
}
};
迭代法
迭代法用层序遍历来处理
class Solution {
public:
int countNodes(TreeNode* root) {
if (!root) return 0;
queue<TreeNode*> que;
que.push(root);
int cnt = 0;
while (!que.empty())
{
int len = que.size();
cnt += len;
for (int i = 0; i < len; ++i)
{
TreeNode *cur = que.front();
que.pop();
if (cur->left) que.push(cur->left);
if (cur->right) que.push(cur->right);
}
}
return cnt;
}
};
适用于完全二叉树的优化
完全二叉树优化方法没自己想出来,得多复习几遍文章来源:https://www.toymoban.com/news/detail-583633.html
优化后也是递归的思想,判断当前树是否为满二叉树,如果是,直接使用公式计算节点个数,否则,递归地计算左右子树的节点个数。文章来源地址https://www.toymoban.com/news/detail-583633.html
class Solution {
public:
int countNodes(TreeNode* root) {
if (root == nullptr) return 0;
TreeNode *leftNode = root->left, *rightNode = root->right;
int leftDepth = 0, rightDepth = 0;
while (leftNode)
{
leftNode = leftNode->left;
leftDepth++;
}
while (rightNode)
{
rightNode = rightNode->right;
rightDepth++;
}
if(leftDepth == rightDepth)
{
return (2 << leftDepth) - 1;
}
int leftCnt = countNodes(root->left);
int rightCnt = countNodes(root->right);
return leftCnt + rightCnt + 1;
}
};
到了这里,关于算法刷题Day 16 二叉树的最大深度+N叉树的最大深度+二叉树的最小深度+完全二叉树的节点个数的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!