最近使用labelme工具标注了一批json格式的数据集,但是想用yolov5试一下检测效果。麻烦来了!需要将数据集转换成txt格式,想白嫖在网上找了大半天都没有我想要的,最后只有自己量身定做了!
1.我的文件夹目录
image文件夹:存放原始图片
json文件夹:存放对应的json文件
txt_label文件夹:存放转换后的txt文件
2.json格式数据集
json格式如下:
3.转换后得到的txt格式
txt格式内容如下: 文章来源:https://www.toymoban.com/news/detail-585605.html
4.转换代码
import json
import os
import xml.etree.ElementTree as ET
import cv2
# 将x1, y1, x2, y2转换成yolov5所需要的x, y, w, h格式
def xyxy2xywh(size, box):
dw = 1. / size[0]
dh = 1. / size[1]
x = (box[0] + box[2]) / 2 * dw
y = (box[1] + box[3]) / 2 * dh
w = (box[2] - box[0]) * dw
h = (box[3] - box[1]) * dh
return (x, y, w, h) # 返回的都是标准化后的值
def voc2yolo(path):
# 可以打印看看该路径是否正确
print(len(os.listdir(path)))
pic_path = '' # 原始图片路径
txt_out_path = '' # 转换后txt保存路径
# 遍历每一个xml文件
for file in os.listdir(path):
print(file)
if "json" in str(file):
with open(os.path.join(path, file), 'r') as f:
data = json.load(f)
print(data)
points = data['shapes'][0]['points']
pic_name = os.path.join(pic_path, data['imagePath'])
txt_name = data['imagePath'].split(".")[0] + ".txt"
imread = cv2.imread(pic_name)
h = imread.shape[0]
w = imread.shape[1]
print(imread.shape)
xmin = points[0][0]
ymin = points[0][1]
xmax = points[2][0]
ymax = points[2][1]
box = [float(xmin), float(ymin), float(xmax),
float(ymax)]
print(box)
#
# # 将x1, y1, x2, y2转换成yolov5所需要的x, y, w, h格式
bbox = xyxy2xywh((w, h), box)
print(bbox)
# # 写入目标文件中,格式为 id x y w h
with open(os.path.join(txt_out_path, txt_name), 'w') as out_file:
out_file.write(str(0) + " " + " ".join(str(x) for x in bbox) + '\n')
out_file.close()
#exit()
if __name__ == '__main__':
# json格式数据路径
path = ''
voc2yolo(path)
文章来源地址https://www.toymoban.com/news/detail-585605.html
到了这里,关于JSON数据格式转TXT数据格式的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!