数据可视化——根据提供的数据,将数据经过处理后以折线图的形式展现

这篇具有很好参考价值的文章主要介绍了数据可视化——根据提供的数据,将数据经过处理后以折线图的形式展现。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

数据可视化——根据提供的数据,将数据经过处理后以折线图的形式展现,python,信息可视化,python,开发语言

前言

前面我们学习了如何使用 pyecharts 模块绘制简单的折线图,那么今天我将为大家分享,如何根据提供的数据将数据进行处理并以折线图的形式展示出来。

处理数据

这是2020年美国、印度、日本三个国家的新冠确诊、治愈、死亡、新增确诊人数的数据。我会将这些数据上传到我的资源中,大家有需要可以去下载。
数据可视化——根据提供的数据,将数据经过处理后以折线图的形式展现,python,信息可视化,python,开发语言

当我们看见这样的数据时会不会觉得顿时就不想看了,但是不急,其实只要我们细心,我们是能看出来里面的层次的。还有就是我们可以借助工具将数据的视图给展示出来以便我们更好的理解。

数据可视化——根据提供的数据,将数据经过处理后以折线图的形式展现,python,信息可视化,python,开发语言

获取数据

我们首先需要使用文件操作拿到这三个文件中的数据。

# 打开我们的测试数据
f_us = open("D:/桌面/美国.txt", 'r', encoding='UTF8') 
f_jp = open("D:/桌面/日本.txt", 'r', encoding='UTF8')
f_in = open("D:/桌面/印度.txt", 'r', encoding='UTF8')

# 读取数据
us_data = f_us.read()
jp_data = f_jp.read()
in_data = f_in.read()

因为我们的数据中有中文,所以我们需要明确读取的格式 UTF_8

筛选数据

当我们拿到这些数据的时候,我们需要对数据进行处理。我们都知道 { } [ ] 数据代表的是 JSON 数据,但是文件中还有一些不属于 JSON 的数据,所以我们需要将他们给处理掉,并且我们只绘制2020年的数据,所以我们需要筛选掉没用的数据。
数据可视化——根据提供的数据,将数据经过处理后以折线图的形式展现,python,信息可视化,python,开发语言
数据可视化——根据提供的数据,将数据经过处理后以折线图的形式展现,python,信息可视化,python,开发语言

# 处理数据
us_data = us_data.replace('jsonp_1629344292311_69436(','')  # 用空字符串来替换这些多余的数据
jp_data = jp_data.replace('jsonp_1629350871167_29498(','')
in_data = in_data.replace('jsonp_1629350745930_63180(','')
us_data = us_data[:-2]  # 截取掉后面的 );
jp_data = jp_data[:-2]
in_data = in_data[:-2]

将JSON数据转换为Python数据

当我们过滤掉这些多余数据之后,我们需要将这些 JSON 数据转换为 python 数据。

# 将json数据转换为python数据
us_dict = json.loads(us_data)
jp_dict = json.loads(jp_data)
in_dict = json.loads(in_data)

别忘了,我们使用 json.loads() 函数的时候,需要导入 json 模块。

筛选出横坐标数据和纵坐标数据

数据可视化——根据提供的数据,将数据经过处理后以折线图的形式展现,python,信息可视化,python,开发语言

先获取到 trend 里面的数据。
数据可视化——根据提供的数据,将数据经过处理后以折线图的形式展现,python,信息可视化,python,开发语言

us_trend = us_dict['data'][0]['trend']
jp_trend = jp_dict['data'][0]['trend']
in_trend = in_dict['data'][0]['trend']

获取横坐标日期updateDate数据

数据可视化——根据提供的数据,将数据经过处理后以折线图的形式展现,python,信息可视化,python,开发语言

x_data = us_trend['updateDate'][:314]  # 前314个数据表示2020年数据

获取纵坐标data数据

数据可视化——根据提供的数据,将数据经过处理后以折线图的形式展现,python,信息可视化,python,开发语言

us_y_data = us_trend['list'][0]['data'][:314]
jp_y_data = jp_trend['list'][0]['data'][:314]
in_y_data = in_trend['list'][0]['data'][:314]

根据处理后的数据绘制折线图

先创建一个空白的折线图

from pyecharts.charts import Line

# 创建折线图
line = Line()

为空白折线图添加横纵坐标数据。

# 添加横纵坐标数据
line.add_xaxis(x_data)
line.add_yaxis('美国确诊人数',us_y_data)
line.add_yaxis('日本确诊人数',jp_y_data)
line.add_yaxis('印度确诊人数',in_y_data)

添加全局配置选项

from pyecharts.options import TitleOpts,LegendOpts,ToolboxOpts,VisualMapOpts

# 设置全局配置项
line.set_global_opts(title_opts=TitleOpts(title='2020年美国确诊人数',pos_left='center',pos_bottom='1%'),
                     legend_opts=LegendOpts(is_show=True),
                     toolbox_opts=ToolboxOpts(is_show=True),
                     visualmap_opts=VisualMapOpts(is_show=True)
)

运行程序会生成一个 render,html 文件,我们运行它。
数据可视化——根据提供的数据,将数据经过处理后以折线图的形式展现,python,信息可视化,python,开发语言

数据可视化——根据提供的数据,将数据经过处理后以折线图的形式展现,python,信息可视化,python,开发语言
这里因为数据太多,看的图形很杂,我们可以设置系列配置选项来取消折线数据的显示。

from pyecharts.options import TitleOpts,LegendOpts,ToolboxOpts,VisualMapOpts,LabelOpts

# 添加横纵坐标数据
line.add_xaxis(x_data)
line.add_yaxis('美国确诊人数',us_y_data,label_opts=LabelOpts(is_show=False))
line.add_yaxis('日本确诊人数',jp_y_data,label_opts=LabelOpts(is_show=False))
line.add_yaxis('印度确诊人数',in_y_data,label_opts=LabelOpts(is_show=False))

数据可视化——根据提供的数据,将数据经过处理后以折线图的形式展现,python,信息可视化,python,开发语言

整体代码展示

import json
from pyecharts.charts import Line
from pyecharts.options import TitleOpts,LegendOpts,ToolboxOpts,VisualMapOpts,LabelOpts

# 打开我们的测试数据
f_us = open("D:/桌面/美国.txt", 'r', encoding='UTF8')
f_jp = open("D:/桌面/日本.txt", 'r', encoding='UTF8')
f_in = open("D:/桌面/印度.txt", 'r', encoding='UTF8')

# 读取数据
us_data = f_us.read()
jp_data = f_jp.read()
in_data = f_in.read()

# 处理数据
us_data = us_data.replace('jsonp_1629344292311_69436(','')
jp_data = jp_data.replace('jsonp_1629350871167_29498(','')
in_data = in_data.replace('jsonp_1629350745930_63180(','')
us_data = us_data[:-2]
jp_data = jp_data[:-2]
in_data = in_data[:-2]

# 将json数据转换为python数据
us_dict = json.loads(us_data)
jp_dict = json.loads(jp_data)
in_dict = json.loads(in_data)

# 获取对应的横坐标与纵坐标数据
us_trend = us_dict['data'][0]['trend']
jp_trend = jp_dict['data'][0]['trend']
in_trend = in_dict['data'][0]['trend']

x_data = us_trend['updateDate'][:314]

us_y_data = us_trend['list'][0]['data'][:314]
jp_y_data = jp_trend['list'][0]['data'][:314]
in_y_data = in_trend['list'][0]['data'][:314]

# 创建折线图
line = Line()

# 添加横纵坐标数据
line.add_xaxis(x_data)
line.add_yaxis('美国确诊人数',us_y_data,label_opts=LabelOpts(is_show=False))
line.add_yaxis('日本确诊人数',jp_y_data,label_opts=LabelOpts(is_show=False))
line.add_yaxis('印度确诊人数',in_y_data,label_opts=LabelOpts(is_show=False))

# 设置全局配置项
line.set_global_opts(title_opts=TitleOpts(title='2020年美国确诊人数',pos_left='center',pos_bottom='1%'),
                     legend_opts=LegendOpts(is_show=True),
                     toolbox_opts=ToolboxOpts(is_show=True),
                     visualmap_opts=VisualMapOpts(is_show=True)
)

line.render()

数据可视化——根据提供的数据,将数据经过处理后以折线图的形式展现,python,信息可视化,python,开发语言文章来源地址https://www.toymoban.com/news/detail-585707.html

到了这里,关于数据可视化——根据提供的数据,将数据经过处理后以折线图的形式展现的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 数字孪生污水处理厂 助力数据采集可视化处理

    随着城镇化和工业化的发展,环境治理已经成为我国重要的社会话题之一。污水治理可以有效改善水质,节约水资源和改善生态环境,在促进经济可持续发展有重要作用。但是,在当前行业不断加强监管以及人力成本不断上升与企业盈利模式固化的矛盾影响下,传统污水治理

    2024年02月02日
    浏览(50)
  • 【Excel统计分析插件】上海道宁为您提供统计分析、数据可视化和建模软件——Analyse-it

    Analyse-it是Microsoft Excel中的 统计分析插件 它为Microsoft Excel带来了 易于使用的统计软件 Analyse-it在软件中 引入了一些新的创新统计分析   Analyse-it与 许多Excel加载项开发人员不同 使用完善的软件开发和QA实践 包括单元/集成/系统测试 敏捷开发、代码审查 问题跟踪和用于变更管

    2024年02月07日
    浏览(43)
  • python 房价数据可视化以数据缺失处理、及回归算法

    房价数据为他国地区 使用工具为JupyterLab、python3 用到的包 绘图包:seaborn、matplotlib 数据处理包:numpy、pandas 统计计算包:math、scipy 回归模型包:make_pipeline、 RobustScaler、ElasticNet,Lasso、KernelRidge、GradientBoostingRegresso、xgboost 导入并打印数据 打印特征值、索引列 打印房价相关的

    2024年02月09日
    浏览(40)
  • MATLAB中3D点云数据的处理与可视化

    3D点云数据是表示3D形状的一种数据结构,它通常是通过激光扫描、立体摄影或其他3D扫描技术获得的。处理和可视化这些数据在很多领域中都非常有用,比如计算机视觉、机器人技术、地理信息系统等。MATLAB提供了一系列的工具,可以帮助我们方便地进行3D点云数据的处理与

    2024年02月03日
    浏览(49)
  • 数据预处理matlab matlab数据的获取、预处理、统计、可视化、降维

    1.1 从Excel中获取 使用readtable() 例1: 使用 spreadsheetImportOptions(Name,Value) 初步确定导入信息, 再用 opts.Name=Value 的格式添加。 例2: 先初始化 spreadsheetImportOptions 对象, 再用 opts.Name=Value 的格式逐个添加。 例3: 将导入信息存到变量里, 再使用 spreadsheetImportOptions(Name,Value)

    2024年02月15日
    浏览(53)
  • 爬虫案例—京东数据爬取、数据处理及数据可视化(效果+代码)

            使用PyCharm(引用requests库、lxml库、json库、time库、openpyxl库和pymysql库)爬取京东网页相关数据(品牌、标题、价格、店铺等) 数据展示(片段):         京东网页有反爬措施,需要自己在网页登录后,获取cookie,加到请求的header中(必要时引入time库,设置爬取

    2024年02月09日
    浏览(45)
  • 12.9建模复盘——EXCEL批量处理数据、查找数据、熵权法、可视化

    以下是一些可以查询英国国家数据的网站: 1. 英国政府网站(www.gov.uk):提供各个政府部门的数据和统计信息,包括经济、人口、教育、健康、环境等领域。 2. 英国国家统计局(www.ons.gov.uk):英国的官方统计机构,提供广泛的统计数据和报告,涵盖经济、劳动力、人口、

    2024年02月05日
    浏览(44)
  • 人工智能:数据分析之数据预处理、分析模型与可视化

    在人工智能和数据科学领域,数据分析是一种核心过程,它帮助我们从大量的数据中提取有价值的信息。数据分析的质量和结果直接影响到决策的效率和准确性。在这篇博客中,我们将详细探讨数据分析的关键步骤,包括数据预处理、分析模型和可视化,并通过实际应用案例

    2024年03月10日
    浏览(69)
  • 快速排序算法在处理不同容量数组时的数据可视化

    回忆快速排序: 链接: link 输出结果: 要想得到处理大规模数组所需的时间,可以修改 volumes参数 eg 这样就能得到快排在处理数据规模从100、200…10000的数组所需的时间啦

    2024年04月10日
    浏览(34)
  • 2023物联网新动向:WEB组态除了用于数据展示,也支持搭建业务逻辑,提供与蓝图连线和NodeRed规则链类似的可视化编程能力

    前言 组态编辑在工业控制、物联网场景中十分常见,越来越多的物联网平台也把组态作为一项标配功能。 物联网产业链自下往上由“端 - 边 - 管 - 云 -用”多个环节构成,组态通常是用于搭建数据展示类型的应用,而随着系统集成度越来越高,项目中对应用的业务逻辑的要求

    2024年02月10日
    浏览(38)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包