概率论的学习和整理17:EXCEL的各种期望,方差的公式

这篇具有很好参考价值的文章主要介绍了概率论的学习和整理17:EXCEL的各种期望,方差的公式。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

1 总结

1.1 本文目标总结方法

1.2 总结一些中间关键函数

2 均值和期望

2.1 求均值的公式

2.2 求随机变量期望的公式

2.3 求随机变量期望的朴素公式

3 方差

3.1 确定数的方差

3.2 统计数的方差公式

3.3 随机变量的方差公式

3.4 EXCEL提供的直接计算方差的公式

4  期望 和方差的公式的实践

4.1 实际计算

4.2  暂时发现,最朴素的期望和方差公式才是通用的,没有之一

5 特殊分布的期望和公式

5.0 用原始的概率,期望和方差的方法

5.0 各种特殊分布的期望和方差公式 (很多对应下面的EXCEL公式)

5.1 超几何分布 HYPGEOM.DIST()

5.2 二项分布  BINOM.DIST()

5.3 泊松分布 poisson.disct()

5.4 几何分布 (暂时没用,可用负二项的)

5.5 负二项分布  negbinom.dist()

5.6 指数分布  expon.dist()

5.7 正态分布  norm.dist()

5.8 其他

1 总结

1.1 本文目标总结方法

  • EXCEL用来用计算 期望和方差
  • 除了分布计算外,甚至有不少直接求某些期望和方差的公式
  • 这里来总结下

1.2 总结一些中间关键函数

  • combin()  组合函数
  • fact()  阶乘函数
  • 排列函数
  • 等等

2 均值和期望

2.1 求均值的公式

如果不是随机变量,只能求均值,而均值有很多种,这也对应不同的均值公式

EXCEL都有对应的公式

  • 算术平均值,AVERAGE()
  • 几何平均值,GEOMEAN()
  • 调和平均值,HARMEAN()
  • 加权平均值,sumproduct(数列1,数列2)

2.2 求随机变量期望的公式

  • 因为随机变量的,数学期望,本质也是一种加权平均值,因为也可以用加权平均值方法求值,sumproduct(数列1,数列2)
  • 我现在没发现直接求 随机变量期望的公式

2.3 求随机变量期望的朴素公式

只要是随机变量,不管是哪种特定分布,甚至不知道具体的分布

朴素的期望公式

  • E(X)=Σpi*xi

3 方差

3.1 确定数的方差

  • D(X) =  Σ(xi-均值)^2/n

3.2 统计数的方差公式

  • 统计的方差公式 和上面基本相同
  • D(X) =  Σ(xi-期望)^2/n

概率论的学习和整理17:EXCEL的各种期望,方差的公式,概率论,学习

3.3 随机变量的方差公式

  • 因为是以概率为加权,所以
  • D(X) =  Σpi*(xi-u)^2

3.4 EXCEL提供的直接计算方差的公式

  • 总体方差        VAR.P()
  • 样本方差        VAR.S()
  • 总体标准差    STDEV.P()
  • 样本标准差    STDEV.S()

4  期望 和方差的公式的实践

4.1 实际计算

  • 在EXCEL里,朴素的 均值,期望,方差公式,在有限数据的情况下都是可以算的
  • 但是EXCEL没有提供通用的,期望和方差的特定计算公式,开始我还觉得奇怪,现在想起来,可能是因为不同的 随机变量,概率分布差别很大,除了统一的朴素 期望公式,朴素方差公式,

概率论的学习和整理17:EXCEL的各种期望,方差的公式,概率论,学习

4.2  暂时发现,最朴素的期望和方差公式才是通用的,没有之一

确定数据/样本数据

  • 确定数据的期望 E(X) = Σxi/n
  • 确定数据的期望 E(X) = Σ(xi-u)^2/n

随机变量的

  • 随机变量的期望 E(X) = Σpi*xi
  • 随机变量的期望 E(X) = Σpi*(xi-u)^2

5 特殊分布的期望和公式

  • 特定的分布,因为期望和方差都有特定公式
  • EXCEL单独提供这些分布的期望和方差,直接求得公式

5.0 用原始的概率,期望和方差的方法

  • 虽然计算概率,需要用对应分布的公式
  • P(x=n) 想了解的随机变量是总次数n,需要对应几何分布,负二项分布
  • P(x=k) 想了解的随机变量是成功次数k,需要对应超几何分布部分,二项分布等
  • 但是计算,期望和方差可以用,随机变量的朴素的定义公式
  • 注意是随机变量的期望和方差朴素定义公式,而不是统计的方差公式等!!
  • 比如两种方差公式差别
  • 但是也有相同点,可以认为 统计公式里  1/N=p

5.0 各种特殊分布的期望和方差公式 (很多对应下面的EXCEL公式)

  • 0-1分布
  • 几何分布,P(x=n) = p*(1-p)^n-1,  E(x)=1/p , D(x)=(1-p)/p
  • 超几何分布,P(x=k) = C(M,k)*C(N-m,n-k)/C(N,n),  E(x)=nM/n , D(x)=n*M/N*(1-M/N)*(N-n)/(N-1)
  • 二项分布,P(x=k) = C(n,k)*p*(1-p)^n-1,  E(x)=np , D(x)=np*(1-p)
  • 泊松分布,P(x=k) = λ^*e^-λ/k!,  E(x)=λ , D(x)=λ,而λ=np
  • 正态分布,
  • 指数分布,
  • 负二项分布,
  • gamma分布,

5.1 超几何分布 HYPGEOM.DIST()

概率论的学习和整理17:EXCEL的各种期望,方差的公式,概率论,学习

 文章来源地址https://www.toymoban.com/news/detail-586655.html

5.2 二项分布  BINOM.DIST()

  • 二项分布可用如下公式
  • BINOM.DIST(U3,V$1,V3,FALSE)

概率论的学习和整理17:EXCEL的各种期望,方差的公式,概率论,学习

5.3 泊松分布 poisson.disct()

  • poisson.disct()

概率论的学习和整理17:EXCEL的各种期望,方差的公式,概率论,学习

 

5.4 几何分布 (暂时没用,可用负二项的)

次数=1的特殊,负二项分布

5.5 负二项分布  negbinom.dist()

概率论的学习和整理17:EXCEL的各种期望,方差的公式,概率论,学习

 

5.6 指数分布  expon.dist()

  • expon.dist()

概率论的学习和整理17:EXCEL的各种期望,方差的公式,概率论,学习

 

5.7 正态分布  norm.dist()

概率论的学习和整理17:EXCEL的各种期望,方差的公式,概率论,学习

 

5.8 其他

  • fdist F分布

到了这里,关于概率论的学习和整理17:EXCEL的各种期望,方差的公式的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 概率论的学习和整理--番外12:2个概率选择比较的题目

    目录 1 要解决的题目 2 先说结论,后面解释原因 2.1 先考虑期望,期望要尽量大,但比然有限制 2.2  再考虑方差,在期望给定前提下,尽量减小方差,稳定体验 2.3 结论:先考虑期望,再考虑方差 3 算法 3.1 错误算法 3.2  正确算法1,直接解方程 3.3 正确算法2,用条件期望求解

    2024年02月16日
    浏览(42)
  • 概率论的学习和整理16: 泊松分布(未完成)

    目录 简单的扩展到泊松分布  比较整体的动态过程,增加实验次数时 当二项分布,n很大,p很小的时候,会趋向泊松分布 当n足够大时,二项分布趋向于正态分布。这个结论在概率论中被称为中心极限定理,它是概率论中一个非常重要的定理,广泛应用于各种领域,如金融、

    2024年02月16日
    浏览(46)
  • 概率论的学习和整理14: 概率发生变化的抽奖,如何计算概率?( 缺 VBA模拟部分)

    目录 1 问题:如果要考察的概率模型(抽奖)里,基础中奖概率一直在变化怎么办? 1.1 基础问题,抽奖抽中的概率会变化 1.2  概率稳定的老模型,有什么问题? 1.3 比如:构建这样的一个新模型 2 用excel 计算这些概率 2.1 不用几何分布,但是照样可以求第n次是第一次成功的概率

    2024年01月17日
    浏览(60)
  • 概率论之 多维随机变量的期望,协方差矩阵

    上一次写了一维随机变量的期望,方差,协方差。本次来记录多维随机变量的期望和协方差矩阵。这一块内容由浅入深,因此会有更新。 假设系统状态有多个分量 x 1 , x 2 , … , x n x_1,x_2,dots,x_n x 1 ​ , x 2 ​ , … , x n ​ ,则将其表示为向量的形式 X = ( x 1 , x 2 , … , x n ) T X=

    2024年02月04日
    浏览(45)
  • 概率论的学习和整理9:超几何分布 (未完成!!!)

    目录 1超几何分布 Hypergeometric distribution          1.1 超几何分布的定义 1.2 为什么叫超几何分布  1.3 超几何分布的公式  (2种公式) 1.3.1 超几何分布的公式1 (总体型公式) 1.3.2 超几何分布的公式2 (拆分型公式) 1.4 超几何分布的分布图 2 超几何分布的期望和方差 3 超几

    2024年02月13日
    浏览(37)
  • 概率论中二项分布期望与方差的详细推导

    二项分布的期望和方差表达式非常简洁,但推导过程却很灵活,我们做如下推导: 概率论中,离散型随机变量期望的定义为 二项分布概率公式为 : 则其期望为 : 我们记   则 因为 所以 根据二项式展开定理,有 所以原式 概率论中,方差的定义为 因为上文已经得到E(X),所以

    2024年02月21日
    浏览(41)
  • 概率论与数理统计(3)--指数分布函数及其期望、方差

    设随机变量X具有如下形式的密度函数,那么则称X服从参数为θ的指数分布, 记为X~EXP(θ).  指数分布的分布函数为: ①数学期望 如果X 服从参数为λ (λ0)的指数分布,那么指数分布X~EXP(θ)的数学期望: λ  ②方差 设X 服从参数为λ (λ0)的指数分布, 指数分布X~EXP(θ)的方差:λ^2。

    2024年02月11日
    浏览(44)
  • 概率论习题之标准正态绝对值的期望

    一、主要注意的点 E ∣ X ∣ = 2 Π 计算 : E ∣ X ∣ = ∫ − ∞ + ∞ ∣ X ∣ f ( x ) d x E Z = E ∣ x − μ ∣ E|X|={sqrt{frac{2}{Pi}} }\\\\ 计算:E|X|=displaystyle int^{+infty}_{-infty}{|X|f(x)dx}\\\\ EZ=E|x-mu| E ∣ X ∣ = Π 2 ​ ​ 计算 : E ∣ X ∣ = ∫ − ∞ + ∞ ​ ∣ X ∣ f ( x ) d x EZ = E ∣ x − μ ∣ 二、

    2024年03月14日
    浏览(76)
  • 【概率论】连续型随机变量的分布函数及数学期望(一)

    已知F₁(x)和F₂(x)是分布函数,若 aF₁(x)-bF₂(x)也是分布函数,则下列关于常数a,b的选项中正确的是()。 A.a= 3 5 frac{3}{5}

    2024年02月12日
    浏览(47)
  • 【概率论】连续型随机变量的分布函数及数学期望(二)

    如果X的密度函数为 p ( x ) = { x , 0 ≤

    2024年01月18日
    浏览(57)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包