科普一下Elasticsearch中BM25算法的使用

这篇具有很好参考价值的文章主要介绍了科普一下Elasticsearch中BM25算法的使用。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

科普一下Elasticsearch中BM25算法的使用,后端

首先还是先了解几个概念,Elasticsearch是一个开源的分布式搜索和分析引擎,它使用一系列算法来计算文档的相关性分数(relevance score)。这些算法用于确定查询与文档的匹配程度,以便按相关性对搜索结果进行排序。以下是Elasticsearch中常用的算分算法:

  1. 词频(Term Frequency,TF):TF算法根据查询词在文档中出现的频率来计算分数。出现频率越高,分数越高。

  2. 逆文档频率(Inverse Document Frequency,IDF):IDF算法根据查询词的全局频率来计算分数。对于在许多文档中都出现的常见词,IDF值较低,分数较低;而对于在少数文档中出现的罕见词,IDF值较高,分数较高。

  3. 字段长度(Field Length):字段长度算法根据文档中字段的长度来计算分数。较短的字段可能更相关,因此分数较高。

  4. 文档频率(Document Frequency):文档频率算法根据查询词在文档集合中出现的文档数来计算分数。在较少的文档中出现的词可能更相关,因此分数较高。

  5. 向量空间模型(Vector Space Model):向量空间模型算法将文档和查询表示为向量,并计算它们之间的相似度。通过计算余弦相似度等度量,可以得到文档与查询的相关性分数。

  6. BM25(Best Match 25):BM25是一种基于TF和IDF的改进算法,它考虑了词频和文档频率,并引入了一些调整参数,以提高搜索结果的质量。

下面展示修改修改BM25相关参数

要调整BM25算法的参数,您可以通过修改Elasticsearch索引的相关性设置来实现。下面是一个示例,展示了如何使用Elasticsearch的API来调整BM25算法的参数:

  1. 设置BM25的参数:需要注意的是,设置该操作时,索引必须是关闭状态

    这块不了解的可以参考之前的一篇关于Elasticsearch索引相关设置的文章,这篇文章详细介绍了哪些是静态索引设置,动态索引设置

    Elasticsearch 创建一个索引怎么也这么复杂:https://mp.weixin.qq.com/s/OnXeESVMreYgBvbGGR4R0g

POST your_index/_close
PUT /your_index/_settings
{
  "index": {
    "similarity": {
      "default": {
        "type""BM25",
        "b""1.2",  // 调整参数b
        "k1""1.0"  // 调整参数k1
      }
    }
  }
}

在上面的示例中,我们使用PUT请求来更新索引的设置。将"b"参数设置为1.2,将"k1"参数设置为1.0。这些参数可以根据您的需求进行调整。参数"b"控制文档长度的影响,较大的值会增加文档长度的权重;参数"k1"控制词频的影响,较大的值会增加词频的权重。

  1. 验证参数设置:
GET /your_index/_settings

使用GET请求获取索引的设置,确保参数已成功设置。

请注意,以上示例中的"your_index"是您要调整设置的索引名称。您可以根据实际情况替换为您的索引名称。

通过调整BM25算法的参数,您可以根据具体需求优化搜索结果的相关性评分。您可以尝试不同的参数值,观察搜索结果的变化,并根据实际情况进行调整。

Elasticsearch是一款流行的开源搜索引擎,广泛应用于信息检索、全文搜索、日志分析等领域。在Elasticsearch中,BM25是一种常用的文本相似度评分算法,用于计算查询和文档之间的相关性。本文将对BM25算法进行介绍,包括算法原理、使用场景、优缺点以及与其他算法的比较。

一、BM25算法简介

BM25算法(Best Matching 25)是一种基于统计学的文本相似度评分算法,用于计算查询和文档之间的相关性。BM25算法结合了向量空间模型(VSM)和概率检索模型(PRM)的优点,能够对文档进行更准确的评分。BM25算法在Elasticsearch中被广泛应用于搜索引擎、信息检索、全文搜索等领域。

二、BM25算法原理

BM25算法的核心思想是根据查询词项在文档中出现的频率和文档中的词汇分布来计算文档的相关性。具体来说,BM25算法将文档和查询表示为向量,然后计算两个向量之间的余弦相似度。BM25算法的公式如下:

其中, 表示查询, 表示文档, 表示查询中包含的词项数, 表示查询词项 在文档 中出现的频率, 是BM25算法的超参数, 表示文档 的长度, 表示所有文档的平均长度, 表示查询词项 的逆文档频率,定义如下:

其中, 表示文档总数, 表示包含查询词项 的文档数。

三、BM25算法优缺点

  1. 优点:

(1)BM25算法能够对文档进行更准确的评分,能够得到更好的搜索结果。

(2)BM25算法具有良好的可调节性,可以通过调整超参数 来适应不同的数据集和查询需求。

(3)BM25算法的计算速度较快,适用于大规模文本数据的处理。

  1. 缺点:

(1)BM25算法对于长文档和短查询的情况下,可能会出现评分偏低的问题。

(2)BM25算法没有考虑词项之间的关联性,可能会导致评分不准确的情况。

四、BM25算法应用场景

BM25算法适用于各种信息检索场景,包括搜索引擎、全文搜索、日志分析等。在Elasticsearch中,BM25算法被广泛用于文本搜索和相关性排序,能够实现快速、准确和可扩展的搜索功能。

五、BM25算法与其他算法的比较

  1. TF-IDF算法

TF-IDF算法是一种常用的文本相似度评分算法,用于计算查询和文档之间的相关性。与BM25算法相比,TF-IDF算法没有考虑文档长度和查询长度的影响,因此在处理长文档和短查询时可能会出现评分偏低的问题。但是TF-IDF算法计算速度较快,并且在处理短文本和长查询时表现较好。在Elasticsearch中,TF-IDF算法也被广泛应用于文本搜索和相关性排序。

  1. Okapi算法

Okapi算法是一种基于概率检索模型的文本相似度评分算法,与BM25算法类似。与BM25算法相比,Okapi算法考虑了词项之间的关联性,因此在处理长文档和短查询时具有优势。但是Okapi算法计算复杂度较高,因此在处理大规模文本数据时可能会出现性能问题。

六、结论

BM25算法是一种常用的文本相似度评分算法,能够对文档进行更准确的评分,适用于各种信息检索场景。BM25算法具有良好的可调节性和计算速度,但也存在一些缺点,例如在处理长文档和短查询时可能会出现评分偏低的问题。与其他算法相比,BM25算法具有自己的优劣势,需要根据具体场景选择合适的算法。在Elasticsearch中,BM25算法被广泛应用于搜索引擎、信息检索、全文搜索等领域,能够实现快速、准确和可扩展的搜索功能。

本文由 mdnice 多平台发布文章来源地址https://www.toymoban.com/news/detail-587006.html

到了这里,关于科普一下Elasticsearch中BM25算法的使用的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Elasticsearch:实用 BM25 - 第 1 部分:分片如何影响 Elasticsearch 中的相关性评分

    作者:Shane Connelly  在 Elasticsearch 5.0 中,我们切换到 Okapi BM25 作为我们的默认相似度算法,这是用于对与查询相关的结果进行评分的算法。 在本博客中,我不会过多地介绍 BM25 与替代措施,但如果你想了解 BM25 的理论依据,你可以继续观看 Elastic{ON} 2016 的 BM25 Demystified 演示文

    2024年02月09日
    浏览(46)
  • Elasticsearch:实用 BM25 - 第 3 部分:在 Elasticsearch 中选择 b 和 k1 的注意事项

     这是系列文章的第三篇文章。之前的文章是: Elasticsearch:实用 BM25 - 第 1 部分:分片如何影响 Elasticsearch 中的相关性评分 Elasticsearch:实用 BM25 - 第 2 部分:BM25 算法及其变量 值得注意的是,当你的用户不能快速找到文档时,选择 b 和 k1 通常不是第一件事。 b = 0.75 和 k1 =

    2024年02月09日
    浏览(36)
  • 集成多元算法,打造高效字面文本相似度计算与匹配搜索解决方案,助力文本匹配冷启动[BM25、词向量、SimHash、Tfidf、SequenceMatcher]

    搜索推荐系统专栏简介:搜索推荐全流程讲解(召回粗排精排重排混排)、系统架构、常见问题、算法项目实战总结、技术细节以及项目实战(含码源) 专栏详细介绍:搜索推荐系统专栏简介:搜索推荐全流程讲解(召回粗排精排重排混排)、系统架构、常见问题、算法项目

    2024年02月05日
    浏览(68)
  • 给大家科普一下什么是APN及配置方法

    欢迎来到东用知识小课堂,今天东东来给大家简单科普一下APN以及它在路由器上面的配置方法 APN(Access Point Name)指一种网络接入技术,它决定了手机通过哪种接入方式来进行拨号。在拨号上网时这些参数都是必须设置的,比如你平时在通过手机上网或在家有线上网时,都需

    2024年02月12日
    浏览(31)
  • 灵科路由器的常用的专业知识科普一下

      一、自治系统 所谓的自治系统就是处于一个管理机构控制之下的路由器和网络群组,它可以是一个路由器直接连接到一个LAN上,同时也连到Internet上,或者是一个由企业骨干网互连的多个局域网,在一个自治系统中的所有路由器必须相互连接,运行相同的路由协议,同时分

    2024年02月05日
    浏览(38)
  • 科普一下:拍抖音需要什么设备,可能用到的设备合集

    大家好,我是@我赢助手短视频运营,抖音是现在最火的短视频平台之一,几乎每个人都在用它,抖音视频的发展离不开手机。 但你知道吗?手机拍摄有很多方面的限制,比如手持稳定程度、快门速度以及光圈大小等;再加上抖音是基于手机应用而产生的。想要拍摄好短视频

    2023年04月19日
    浏览(38)
  • 关于图像去噪的BM3D算法python库讲解

    目录 基本原理 一、BM3D算法的详解 ​编辑 二、python中的应用 总结 图像做块间匹配,把多张相似的2D图像块组成3D组,对3D组进行域变换,利用域变换上系数的稀疏性,进行滤波,然再逆向3D域变换,得到滤波后的图像块,放回原来的位置,每个像素可能得到多次滤波的结果,

    2024年02月16日
    浏览(40)
  • Elasticsearch的高阶使用方法有哪些?,后端程序员必备的Linux基础知识+常见命令

    ③should 通用的道理:多个查询条件通过should连接,相当于以前常用的or,说白了也就是逻辑运算符“与”。 ps :关于其格式使用,不要看它图中好像挺复杂的样子,其实都可以通过工具有提示,并且这些写多了基本也就知道了。 2范围查询 商品都有自己的价格,用户可以通过

    2024年04月08日
    浏览(82)
  • 【学习日记2023.6.25】之ElasticSearch搜索引擎

    1.1.1.elasticsearch的作用 elasticsearch是一款非常强大的开源搜索引擎,具备非常多强大功能,可以帮助我们从海量数据中快速找到需要的内容 例如: 在GitHub搜索代码 在电商网站搜索商品 在百度搜索答案 在打车软件搜索附近的车 1.1.2 ELK技术栈 elasticsearch结合kibana、Logstash、Beats,

    2024年02月16日
    浏览(41)
  • spring boot集成Elasticsearch-SpringBoot(25)

      搜索引擎(search engine )通常意义上是指:根据特定策略,运用特定的爬虫程序从互联网上搜集信息,然后对信息进行处理后,为用户提供检索服务,将检索到的相关信息展示给用户的系统。   而我们讲解的是捜索的索引和检索,不涉及爬虫程序的内容爬取。大部分公司

    2023年04月09日
    浏览(110)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包