回归预测 | MATLAB实现Attention-GRU多输入单输出回归预测(注意力机制融合门控循环单元,TPA-GRU)

这篇具有很好参考价值的文章主要介绍了回归预测 | MATLAB实现Attention-GRU多输入单输出回归预测(注意力机制融合门控循环单元,TPA-GRU)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

回归预测 | MATLAB实现Attention-GRU多输入单输出回归预测----注意力机制融合门控循环单元,即TPA-GRU,时间注意力机制结合门控循环单元

效果一览

回归预测 | MATLAB实现Attention-GRU多输入单输出回归预测(注意力机制融合门控循环单元,TPA-GRU),回归预测,Attention-GRU,多输入单输出回归预测,TPA-GRU,注意力机制融合,门控循环单元,Attention
回归预测 | MATLAB实现Attention-GRU多输入单输出回归预测(注意力机制融合门控循环单元,TPA-GRU),回归预测,Attention-GRU,多输入单输出回归预测,TPA-GRU,注意力机制融合,门控循环单元,Attention
回归预测 | MATLAB实现Attention-GRU多输入单输出回归预测(注意力机制融合门控循环单元,TPA-GRU),回归预测,Attention-GRU,多输入单输出回归预测,TPA-GRU,注意力机制融合,门控循环单元,Attention
回归预测 | MATLAB实现Attention-GRU多输入单输出回归预测(注意力机制融合门控循环单元,TPA-GRU),回归预测,Attention-GRU,多输入单输出回归预测,TPA-GRU,注意力机制融合,门控循环单元,Attention
回归预测 | MATLAB实现Attention-GRU多输入单输出回归预测(注意力机制融合门控循环单元,TPA-GRU),回归预测,Attention-GRU,多输入单输出回归预测,TPA-GRU,注意力机制融合,门控循环单元,Attention

基本介绍

MATLAB实现Attention-GRU多输入单输出回归预测(注意力机制融合门控循环单元,也可称呼TPA-GRU,时间注意力机制结合门控循环单元),将注意力机制( attention mechanism) 引入GRU( gated recurrent unit) 模型之中,最后,将特征数据集划分为训练集、验证集和测试集,训练集用于训练模型,确定最优模型参数,验证集和测试集用于对模型效果进行评估。

模型结构

相较于LSTM,GRU网络比较大的改动在于:
(1)GRU网络将单元状态与输出合并为隐藏状态,依靠隐藏状态来传输信息。
(2) GRU网络将LSTM 中的遗忘门和输入门整合成为了一个更新门限。正是由于这两个创新点的引入,使得GRU 模型较LSTM 模型具有如下优点: 参数量减少了三分之一,不容易发生过拟合的现象,在一些情况下可以省略dropout 环节; 在训练数据很大的时候可以有效减少运算时间,加速迭代过程,提升运算效率; 从计算角度看,其可扩展性有利于构筑较大的模型。同时,GRU继承了LSTM 处理梯度问题的能力,其门结构可以有效过滤掉无用信息,捕捉输入数据的长期依赖关系,在处理序列问题上具有非常出色的表现。

注意力机制是深度学习中的一种仿生机制,它的提出是由人类观察环境的习惯规律所总结而来的,人类在观察环境时,大脑往往只关注某几个特别重要的局部,获取需要的信息,构建出关于环境的描述,而注意力机制正是如此,其本质就是对关注部分给予较高权重,从而获取更有效的信息,从数学意义上来说,它可以理解为是一种加权求和。注意力机制的主要作用包括:
( 1) 对输入序列的不同局部,赋予不同的权重。
( 2) 对于不同的输出序列局部,给输入局部不一样赋权规划。

回归预测 | MATLAB实现Attention-GRU多输入单输出回归预测(注意力机制融合门控循环单元,TPA-GRU),回归预测,Attention-GRU,多输入单输出回归预测,TPA-GRU,注意力机制融合,门控循环单元,Attention
回归预测 | MATLAB实现Attention-GRU多输入单输出回归预测(注意力机制融合门控循环单元,TPA-GRU),回归预测,Attention-GRU,多输入单输出回归预测,TPA-GRU,注意力机制融合,门控循环单元,Attention

回归预测 | MATLAB实现Attention-GRU多输入单输出回归预测(注意力机制融合门控循环单元,TPA-GRU),回归预测,Attention-GRU,多输入单输出回归预测,TPA-GRU,注意力机制融合,门控循环单元,Attention

程序设计

  • 完整程序和数据下载:私信博主回复Attention-GRU多输入单输出回归预测
%%  注意力参数
Attentionweight = params.attention.weight;  % 计算得分权重
Ht = GRU_Y(:, :, end);                      % 参考向量
num_time = size(GRU_Y, 3);                  % 时间尺度

%%  注意力得分
socre = dlarray;
for i = 1: num_time - 1
    A = extractdata(squeeze(GRU_Y(:, :, i)));
    A = repmat(A, [1, 1, num_hidden]);
    A = permute(A, [1, 3, 2]);
    A = dlarray(A, 'SCB');
    B = squeeze(sum(A .* dlarray(Attentionweight, 'SC'), 1));
    C = squeeze(sum(B .* Ht, 1));
    socre = [socre; C];
end
%%  注意力得分
a = sigmoid(socre);
Vt = 0;
for i = 1: num_time - 1
    Vt = Vt + a(i, :) .* GRU_Y(:, :, i);
end
%%  注意力机制
bias1 = params.attenout.bias1;
bias2 = params.attenout.bias2;
weight1 = params.attenout.weight1;
weight2 = params.attenout.weight2;
HVT = fullyconnect(Vt, weight1, bias1) + fullyconnect(Ht, weight2, bias2);
%%  全连接层
LastBias = params.fullyconnect.bias1;
LastWeight = params.fullyconnect.weight1;
%%  注意力参数初始化
params.attention.weight = gpuArray(dlarray(0.01 * randn(num_hidden, num_hidden)));
%%  注意力权重初始化
params.attenout.weight1 = gpuArray(dlarray(0.01 * randn(num_hidden, num_hidden)));
params.attenout.weight2 = gpuArray(dlarray(0.01 * randn(num_hidden, num_hidden)));

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/127944569?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/127944537?spm=1001.2014.3001.5502文章来源地址https://www.toymoban.com/news/detail-589295.html

到了这里,关于回归预测 | MATLAB实现Attention-GRU多输入单输出回归预测(注意力机制融合门控循环单元,TPA-GRU)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 回归预测 | MATLAB实现GRU门控循环单元多输入多输出

    预测效果 基本介绍 MATLAB实现GRU门控循环单元多输入多输出,数据为多输入多输出预测数据,输入10个特征,输出3个变量,程序乱码是由于版本不一致导致,可以用记事本打开复制到你的文件,运行环境MATLAB2020b及以上。命令窗口输出MAE和R2,可在下载区获取数据和程序内容。

    2024年02月12日
    浏览(42)
  • 回归预测 | MATLAB实现TCN-GRU时间卷积门控循环单元多输入单输出回归预测

    预测效果 基本介绍 1.Matlab实现TCN-GRU时间卷积门控循环单元多输入单输出回归预测; 2.运行环境为Matlab2021b; 3.输入多个特征,输出单个变量,多变量回归预测; 4.data为数据集,excel数据,前7列输入,最后1列输出,MainTCN_GRUNN.m为主程序,运行即可,所有文件放在一个文件夹;

    2024年02月16日
    浏览(37)
  • 回归预测 | MATLAB实现CNN-LSTM-Attention多输入单输出回归预测

    预测效果 基本介绍 MATLAB实现CNN-LSTM-Attention多输入单输出回归预测,CNN-LSTM结合注意力机制多输入单输出回归预测。 模型描述 Matlab实现CNN-LSTM-Attention多变量回归预测 1.data为数据集,格式为excel,7个输入特征,1个输出特征; 2.MainCNN_LSTM_Attention.m为主程序文件,运行即可; 3.命

    2024年02月06日
    浏览(56)
  • 回归预测 | MATLAB实现WOA-CNN-GRU鲸鱼算法优化卷积门控循环单元多输入单输出回归预测

    预测效果 基本介绍 回归预测 | MATLAB实现WOA-CNN-GRU鲸鱼算法优化卷积门控循环单元多输入单输出回归预测,运行环境Matlab2020b及以上。优化正则化率、学习率、隐藏层单元数。 1.MATLAB实现WOA-CNN-GRU鲸鱼算法优化卷积门控循环单元多输入单输出回归预测 2.输入多个特征,输出单个

    2024年02月16日
    浏览(43)
  • 高创新 | Matlab实现OOA-CNN-GRU-Attention鱼鹰算法优化卷积门控循环单元注意力机制多变量回归预测

    预测效果 基本介绍 1.Matlab实现OOA-CNN-GRU-Attention鱼鹰算法优化卷积门控循环单元注意力机制多变量回归预测; 2.运行环境为Matlab2021b; 3.data为数据集,excel数据,输入多个特征,输出单个变量,多变量回归预测; main.m为主程序,运行即可,所有文件放在一个文件夹; 4.命令窗口

    2024年04月12日
    浏览(46)
  • 回归预测 | MATLAB实现SO-CNN-GRU蛇群算法优化卷积门控循环单元多输入单输出回归预测

    预测效果 基本介绍 MATLAB实现SO-CNN-GRU蛇群算法优化卷积门控循环单元多输入单输出回归预测(完整源码和数据) 1.MATLAB实现SO-CNN-GRU蛇群算法优化卷积门控循环单元多输入单输出回归预测(完整源码和数据) 2.输入多个特征,输出单个变量,多输入单输出回归预测; 3.多指标评价

    2024年02月14日
    浏览(45)
  • 基于CNN-GRU-Attention的时间序列回归预测matlab仿真

    目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 4.1 CNN(卷积神经网络)部分 4.2 GRU(门控循环单元)部分 4.3 Attention机制部分 5.算法完整程序工程 matlab2022a          CNN-GRU-Attention模型结合了卷积神经网络(CNN)、门控循环单元(GRU)和注意力

    2024年02月22日
    浏览(44)
  • 回归预测 | MATLAB实现GRU(门控循环单元)多输入单输出(不调用工具箱函数)

    预测效果 基本介绍 GRU神经网络是LSTM神经网络的一种变体,LSTM 神经网 络是在RNN的基础上发展起来的。RNN是一种成熟的机器学习方法,在处理时序数列方面具有着很大优势。RNN中包含信号反馈结构,能将t时刻的输出信息与t时刻之前的信息相关联,具有动态特征和记忆功能。

    2024年02月16日
    浏览(48)
  • 基于PSO优化的GRU多输入时序回归预测(Matlab)粒子群优化门控循环单元神经网络时序回归预测

    目录 一、程序及算法内容介绍: 基本内容: 亮点与优势:  二、实际运行效果:  三、部分程序: 四、完整代码+数据分享下载: 本代码基于 Matlab 平台编译,将 PSO (粒子群算法)与 GRU (门控循环单元神经网络)结合,进行 多输入数据回归预测 输入训练的数据包含 8个特征

    2024年02月19日
    浏览(47)
  • 回归预测 | Matlab基于SO-GRU蛇群算法优化门控循环单元的数据多输入单输出回归预测

    效果一览 基本介绍 1.Matlab基于SO-GRU蛇群算法优化门控循环单元的数据多输入单输出回归预测(完整源码和数据) 2.优化参数为:学习率,隐含层节点,正则化参数。 3.多特征输入单输出的回归预测。程序内注释详细,直接替换数据就可以用。 4.程序语言为matlab,程序可出预测

    2024年02月02日
    浏览(75)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包