Python探索金融数据进行时间序列分析和预测

这篇具有很好参考价值的文章主要介绍了Python探索金融数据进行时间序列分析和预测。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

大家好,时间序列分析是一种基于历史数据和趋势分析进行预测的统计技术。它在金融和经济领域非常普遍,因为它可以准确预测趋势并做出明智的决策。本文将使用Python来探索经济和金融数据,执行统计分析,并创建时间序列预测。

我们将在本教程中使用NumPy、Pandas和Matplotlib等不同的Python库,此外还将介绍yfinance库,并使用它来从Yahoo Finance下载金融数据。

安装库

在开始之前,安装必要的库,打开终端并运行以下命令:

pip install pandas numpy matplotlib yfinance

接下来,打开一个新的Jupyter Notebook或选择的任何Python环境,开始实现代码。

数据收集

为了演示如何使用Python进行时间序列分析和预测,将使用微软公司的每日调整收盘价,这些数据由Yahoo Finance提供。在下载数据之前,导入所需的库:

import pandas as pd
import numpy as np
import yfinance as yf
import matplotlib.pyplot as plt

# 设置可视化的样式。
plt.style.use('fivethirtyeight')

接下来,定义微软公司的代码、开始和结束日期。

# 定义代码并下载数据。
MSFT = yf.download('MSFT', start='2010-01-01', end='2022-06-30')

yfinance库提供了一种简单的方法来下载特定代码的金融数据,开始和结束日期表示我们要下载的数据时间段,本文为2010年1月至2022年6月。

探索性数据分析

现在已经下载了数据,然后探索一下数据以更好地了解它的结构和特征,可以使用Pandas来分析数据。

# 显示数据的前5行。
print(MSFT.head())

# 显示数据的统计摘要。
print(MSFT.describe())

第一行代码将数据的前5行输出到控制台。它给我们一个快速查看数据的结构——显示日期、开盘价、最高价、最低价、收盘价和调整后的收盘价。

第二行代码提供了数据的统计摘要,显示计数、平均值、标准差、最小值、最大值和四分位数值。

接下来,让我们绘制每日调整后的收盘价,使数据可视化。

# 绘制微软公司的调整后收盘价。
plt.figure(figsize=(12,6))
plt.plot(MSFT['Adj Close'], label='Adjusted Close')
plt.title('Microsoft Adjusted Close Price')
plt.xlabel('Date')
plt.ylabel('Adjusted Close Price ($)')
plt.legend(loc='upper left')
plt.xticks(rotation=45)
plt.show()

Python探索金融数据进行时间序列分析和预测,python数据分析,python可视化,python,金融,开发语言

 时间序列分析

接下来需要进行时间序列分析,以深入了解数据的时间行为。自相关函数(ACF)和偏自相关函数(PACF)用于识别连续观测值和预测值之间的关系,可以使用statsmodels库来计算ACF和PACF。

from statsmodels.graphics.tsaplots import plot_acf, plot_pacf

# 绘制自相关和偏自相关函数
fig, ax = plt.subplots(2, figsize=(12,6))
plot_acf(MSFT['Adj Close'], lags=20, ax=ax[0])
plot_pacf(MSFT['Adj Close'], lags=20, ax=ax[1])
plt.show()

上面的代码绘制了微软公司调整后的收盘价的ACF和PACF,滞后期最长为20。

Python探索金融数据进行时间序列分析和预测,python数据分析,python可视化,python,金融,开发语言

 从ACF图中,我们可以观察到自相关值在缓慢下降。PACF图表明只有在滞后1时期,才存在显著的自相关性,这表明第一个滞后期或时间段与当前观察值具有最强的相关性。

预测

现在我们已经分析了数据并了解了其结构和趋势,让我们使用Prophet库进行一些预测。

pip install prophet
from prophet import Prophet

首先,我们将创建一个新的DataFrame,仅捕获我们分析所需的列。

# 创建一个新的DataFrame
data = MSFT.loc[:, ['Adj Close']]
data.head()

接下来,我们将重命名列以适应Prophet的命名约定。

# 重命名列以适应Prophet的命名约定
data = data.reset_index()
data = data.rename(columns={'Date':'ds', 'Adj Close':'y'})
data.head()

上述代码将DataFrame中必要的列重命名以适应Prophet的命名约定,ds列表示日期,而y列表示我们要预测的值。

现在,我们将数据拆分为训练集和测试集,并使用Prophet库进行预测。

train_data = data[data['ds'] < '2021-07-01']
test_data = data[data['ds'] >= '2021-07-01']

# 创建模型并拟合训练数据
model = Prophet()
model.fit(train_data)

# 定义一个与预测范围一致的新的DataFrame
future = test_data[['ds']]
forecast = model.predict(future)

# 绘制预测图
model.plot(forecast)
plt.title('Microsoft Adjusted Close Price: Actual vs. Forecast')
plt.xlabel('Date')
plt.ylabel('Adjusted Close Price ($)')
plt.show()

上述代码创建了一个Prophet模型并拟合训练数据,未来的DataFrame用ds列表示我们的预测日期。然后我们进行预测,并将结果保存在forecast DataFrame中,最后使用模型的plot()函数绘制预测图。

Python探索金融数据进行时间序列分析和预测,python数据分析,python可视化,python,金融,开发语言

 总结

时间序列分析和预测是获得不同领域数据洞察力的重要统计技术。本文从雅虎金融收集数据,并使用Python进行数据分析,包括探索性数据分析和预测。

本文演示了各种可视化技术,例如绘制移动平均线、ACF和PACF图,同时还进行了时间序列预测,这在金融和经济中是做出明智的投资决策所必需的。文章来源地址https://www.toymoban.com/news/detail-589620.html

到了这里,关于Python探索金融数据进行时间序列分析和预测的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • python使用ARIMA进行时间序列的预测(基础教程)

    时间序列就是以时间为索引的数据,比如下面这种形式 数据链接:https://pan.baidu.com/s/1KHmCbk9ygIeRHn97oeZVMg 提取码:s0k5 python使用ARIMA建模,主要是使用statsmodels库 首先是建模流程,如果不是太明白不用担心,下面会详细的介绍这些过程 首先要注意一点,ARIMA适用于 短期 单变量

    2024年01月17日
    浏览(45)
  • Python用 tslearn 进行时间序列聚类可视化

    我们最近在完成一些时间序列聚类任务,偶然发现了 tslearn 库。我很想看看启动和运行 tslearn 已内置的聚类有多简单,结果发现非常简单直接 ( 点击文末“阅读原文”获取完整 代码数据 )。 相关视频 首先,让我们导入我们需要的库: netdata_pandas 用于提取一些时间序列数据

    2024年02月11日
    浏览(35)
  • 使用 Ploomber、Arima、Python 和 Slurm 进行时间序列预测

    推荐:使用 NSDT场景编辑器助你快速搭建可二次编辑的3D应用场景 笔记本由 8 个任务组成,如下图所示。它包括建模的大多数基本步骤 - 获取数据清理、拟合、超参数调优、验证和可视化。作为捷径,我拿起笔记本并使用Soorgeon工具自动将笔记本模块化到Ploomber管道中。这会将

    2024年02月12日
    浏览(46)
  • 时间序列预测模型实战案例(二)(Holt-Winter)(Python)结合K-折交叉验证进行时间序列预测实现企业级预测精度(包括运行代码以及代码讲解)

    目录 引言 数据格式 运行代码  Holt-Winters模型主体 程序入口 参数讲解 开始训练 预测结果   话不多说上来先上预测精度分析图,其中MAE的误差大概在0.11,以下数据均是预测未知数据,而不是训练数据的预测图。   开始之前我们先来简单了解一下Holt-Winters模型 Holt-Winters模型,也

    2024年02月05日
    浏览(87)
  • 时间序列基础操作:使用python与eviews对AR与ARMA模型进行定阶与预报

    一般处理时间序列的基本过程:(无季节趋势) 处理时间序列的简单过程(无季节趋势) 注:上图中LB检验的统计量纠正:n*(n+2),而不是n*(n-2)  几种基础时间序列模型(模型的具体形式补充见文末): 目录 一、Python处理 1.1.step1:平稳性检验与白噪音检验 1.1.1平稳性检验:

    2024年02月07日
    浏览(49)
  • Time-LLM:为时间序列预测重新编程LLM 探索Time-LLM的架构,并在Python中将其应用于预测项目

    参考资料:Time-LLM/ Reprogram an LLM for Time Series Forecasting.md 研究人员尝试将自然语言处理(NLP)技术应用于时间序列领域并非首次。 例如,Transformer架构在NLP领域是一个重要的里程碑,但其在时间序列预测方面的表现一直平平,直到PatchTST的提出。 正如您所知,大型语言模型(

    2024年04月25日
    浏览(50)
  • Python数据分析案例11——灰色预测法预测时间序列数据

    本次案例来自2022华为杯第E题,第2小问。给定了2012.01-2022.03的土壤湿度的月度数据,需要预测2022.04-2023.12的土壤湿度的月度数据。典型的时间序列预测。 传统的时间序列预测肯定是ARIMA模型,可以参考我之前的文章。Python统计学10——时间序列分析自回归模型(ARIMA) 现在流行的

    2024年02月06日
    浏览(60)
  • ARIMA模型时间序列数据分析(附python代码)

    ARIMA模型建模流程  1 )平稳性检验与差分处理 我们选取原始数据 bus 中的“ prf_get_person_count ”列,并截取前 32 个站点的数据进行平稳性检验,这里采用的是 ADF 检验确定数据的平稳性,导入 statsmodels 包下的 adfuller 函数,该函数返回 adf 值与概率 p 值。若原始序列不平稳,就

    2024年02月01日
    浏览(54)
  • PYthon 时间序列数据重采样-resample()方法(Pandas篇-23)

    PYthon 时间序列数据重采样-resample()方法(Pandas篇-23)         🍹博主 侯小啾 感谢您的支持与信赖。☀️ 🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹

    2024年01月19日
    浏览(38)
  • 异常数据检测 | Python实现k-means时间序列异常数据检测

    文章概述 异常数据检测 | Python实现k-means时间序列异常数据检测 模型描述 k-means是一种广泛使用的聚类算法。它创建了k个具有相似特性的数据组。不属于这些组的数据实例可能会被标记为异常。在我们开始k-means聚类之前,我们使用elbow方法来确定最佳聚类数量。 源码分享

    2024年02月08日
    浏览(45)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包