【Python】数据可视化利器PyCharts在测试工作中的应用

这篇具有很好参考价值的文章主要介绍了【Python】数据可视化利器PyCharts在测试工作中的应用。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

点击跳转原文:【Python】数据可视化利器PyCharts在测试工作中的应用

实际应用:常态化性能压测数据统计

【Python】数据可视化利器PyCharts在测试工作中的应用,信息可视化,python,数据分析文章来源地址https://www.toymoban.com/news/detail-590482.html

import random
from pyecharts.charts import Line, Bar, Grid, Pie, Page
from pyecharts import options as opts
# 查询过去 8 次数据
time_range = 8

interface = ['充值', '赠送', '支付', '支付回退', '预授权']
bar = (
    Bar()
        .add_xaxis(interface)
        .add_yaxis("支付", [113, 106, 122, 128, 128, 55, 45])
        .add_yaxis("券", [75, 46, 75, 65, 118, 15, 70])
        .add_yaxis("限额限频", [173, 146, 175, 165, 218, 115, 170])
        .add_yaxis("全流程", [65, 46, 70, 65, 108, 45, 40])
        .set_global_opts(title_opts=opts.TitleOpts(title="TPS(当前版本)"))
)
line = Line().add_xaxis([f"2023-07-0{i} 05:04:2{i}" for i in range(1, time_range)]). \
    add_yaxis(interface[0], [random.randint(100, 150) for _ in range(time_range)])

for i, inter in enumerate(interface):
    line.add_yaxis(inter, [random.randint(10 * (i + 1), 100) for _ in range(time_range)],
                   label_opts=opts.LabelOpts(is_show=False))
line.set_global_opts(
    title_opts=opts.TitleOpts(title="性能趋势(支付)", pos_top="48%"),
    legend_opts=opts.LegendOpts(pos_top="48%"),
    yaxis_opts=opts.AxisOpts(
        name="TPS",
        axislabel_opts=opts.LabelOpts(is_show=False),  # 设置label_opts参数
    )
)

grid = Grid().add(bar, grid_opts=opts.GridOpts(pos_bottom="60%")).add(line, grid_opts=opts.GridOpts(pos_top="60%"))

pie = Pie()
pie.add("-", [("已剔除", 2), ("梳理中", 2),  ("已完成",  15), ("优化中", 13), ("时间规划中", 13)])
pie.set_global_opts(title_opts=opts.TitleOpts(title="摸底系统统计"), )
# - `{a}`:表示系列名称。`{b}`:表示数据类别 `{c}`:表示数据值(如10、25、50和15)。`{d}`:表示数据所占的百分比。- `{@[index]}`:表示数据数组中索引为`index`的值。
pie.set_series_opts(label_opts=opts.LabelOpts(formatter="{a}{b}: {c} ({d}%)"))

page = Page()
page.add(grid)
page.add(pie)
page.render()

到了这里,关于【Python】数据可视化利器PyCharts在测试工作中的应用的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Kafka可视化利器 KafkaTool 发送kafka消息

    kafak是我们工作中常用的消息组件,今天在跟合作方联调的时候被告知上游没有准备好消息数据,没有办法从依赖方拿到消息但是我们还又想测试自己写的消息消费的代码,怎么办呢?常规的做法就是把消息消费的代码抽离出来包装成一个公共方法,提供一个Controller直接构造

    2024年01月19日
    浏览(41)
  • ROS2可视化利器---Foxglove Studio

    之前作者已经讲了《ROS1可视化利器—-Webviz》,然后就有读者问,ROS2有没有可以使用的可视化工具呢,答案是肯定的,除了plotjuggler这种ROS1和ROS2通用的可视化利器,还有一种全平台通用的软件FoxgloveStudio,Github开源链接为https://github.com/foxglove/studio。 对于FoxgloveStudio这个程序来

    2024年01月22日
    浏览(49)
  • 正则可视化工具:学习和编写正则表达式的利器

    正则表达式是一种强大的文本匹配和处理工具,但对于初学者和非专业开发者来说,编写和理解正则表达式可能是一项具有挑战性的任务。为了帮助人们更好地学习和编写正则表达式,正则可视化工具应运而生。本文将探讨正则可视化工具的优点,分析其在学习和编写正则表

    2024年02月19日
    浏览(37)
  • GeoServer中地图可视化提升利器之SLD知识简介

    目录 前言  一、SLD简介 1、介绍 2、SLD的版本 3、SLD的Schema说明 二、SLD中相关知识解析 1、Scheme简要说明 2、一个SLD实例 总结         在互联网上有很多精美的地图,在地图从shp或者gdb等矢量文件,经过设计人员的加工,配色,标注,符号化等等修饰加工。原始的点线面数

    2024年02月09日
    浏览(50)
  • 大数据可视化——基于Python豆瓣电影数据可视化分析

    本项目旨在通过对豆瓣电影数据进行综合分析与可视化展示,构建一个基于Python的大数据可视化系统。通过数据爬取收集、清洗、分析豆瓣电影数据,我们提供了一个全面的电影信息平台,为用户提供深入了解电影产业趋势、影片评价与演员表现的工具。项目的关键步骤包括

    2024年02月04日
    浏览(83)
  • Python 数据可视化-文本可视化(词云图)

    这篇文章主要是教大家如何制作一个自定义个性化词云图,具体要求如下: 1.    文本内容使用文件content.txt的内容。如下图所示: 2.    字体任意选取。这里我选择的是极影毁片辉宋字体   3.    指定词云形状为文件222.png。如下图所示:   4.    设置文字颜色以背景图片

    2024年02月13日
    浏览(55)
  • 大数据可视化——基于Python豆瓣电影数据可视化分析系统

    本项目旨在通过对豆瓣电影数据进行综合分析与可视化展示,构建一个基于Python的大数据可视化系统。通过数据爬取收集、清洗、分析豆瓣电影数据,我们提供了一个全面的电影信息平台,为用户提供深入了解电影产业趋势、影片评价与演员表现的工具。项目的关键步骤包括

    2024年01月21日
    浏览(59)
  • 81 | Python可视化篇 —— Seaborn数据可视化

    Seaborn是Python中一个基于Matplotlib的高级数据可视化库,它提供了更简单的API和更美观的图形样式,适用于数据探索和展示。在本教程中,我们将介绍Seaborn的基本概念和用法,并通过一些示例演示如何使用Seaborn来创建各种图表和图形。

    2024年02月14日
    浏览(43)
  • 83 | Python可视化篇 —— Bokeh数据可视化

    Bokeh 是一种交互式数据可视化库,它可以在 Python 中使用。它的设计目标是提供一个简单、灵活和强大的方式来创建现代数据可视化,同时保持良好的性能。Bokeh 支持多种图表类型,包括线图、散点图、柱状图、饼图、区域图、热力图等。此外,它还支持将这些图表组合在一

    2024年02月13日
    浏览(45)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包