LeetCode | C++ 动态规划——300.最长递增子序列、674. 最长连续递增序列、718. 最长重复子数组

这篇具有很好参考价值的文章主要介绍了LeetCode | C++ 动态规划——300.最长递增子序列、674. 最长连续递增序列、718. 最长重复子数组。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

300.最长递增子序列

300题目链接
dp 数组定义

dp[i] 表示 i 之前包括 i 的以 nums[i]结尾 的最长递增子序列的长度

需要包含nums[i]结尾,不然在做递增比较的时候,就没有意义了。

递推公式

位置 i 的最长递增子序列 等于 j 从 0 到 i - 1各个位置的最长递增子序列 + 1 的 最大值

if (nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1);

注意这里不是要dp[i] 与 dp[j] + 1进行比较,而是我们要取dp[j] + 1的最大值。即在遍历 j 时,得到 对应的不同的dp[i] 值,选择其中最大的。

dp数组初始化

每一个i,对应的dp[i](即最长递增子序列)起始大小至少都是1.

遍历顺序

i 的遍历顺序 从前往后

j 的遍历顺序 从前往后 和 从后往前 都可以

class Solution {
public:
    int lengthOfLIS(vector<int>& nums) {
        int result = 1;
        vector<int> dp(nums.size(), 1);
        for (int i = 1; i < nums.size(); i++) {
            for (int j = 0; j <= i; j++) {
                if (nums[i] > nums[j]) {
                    dp[i] = max(dp[i], dp[j] + 1);
                }
                if (dp[i] > result) result = dp[i];
                // cout << "i: " << i << " " << "dp[i]:" << dp[i] << endl;
            }
            
        }
        return result;
    }
};

674. 最长连续递增序列

674题目链接
dp 数组定义

以下标 i 为结尾的连续递增的子序列长度为dp[i]。

递推公式

如果 nums[i] > nums[i - 1],那么以 i 为结尾的连续递增的子序列长度 一定等于 以i - 1为结尾的连续递增的子序列长度 + 1 。

即:dp[i] = dp[i - 1] + 1;

dp数组初始化

以下标 i 为结尾的连续递增的子序列长度最少也应该是1

遍历顺序

从前往后

class Solution {
public:
    int findLengthOfLCIS(vector<int>& nums) {
        vector<int> dp(nums.size(), 1);
        int result = 1;
        for (int i = 1; i < nums.size(); i++) {
            if (nums[i] > nums[i - 1]) {
                dp[i] = dp[i - 1] + 1;
            }
            if (dp[i] > result) result = dp[i];
        }
        return result;
    }
};

718. 最长重复子数组

718题目链接
dp[i] [j]数组含义

以下标 i - 1为结尾的 A,和以下标 j - 1为结尾的 B,最长重复子数组长度为dp[i] [j]。

当然也可以定义为 以 i , j 为结尾,只不过初始化时,需要多写几行。

递推公式

根据dp[i] [j]的定义,dp[i] [j]的状态只能由dp[i - 1] [j - 1]推导出来。

即当A[i - 1] 和B[j - 1]相等的时候,dp[i] [j] = dp[i - 1] [j - 1] + 1;

根据递推公式可以看出,遍历i 和 j 要从1开始!

dp数组初始化

dp[i] [0] 和 dp[0] [j] 没有意义,但考虑到递推公式,需要将其初始化为0

遍历顺序

外层遍历 A , 内层遍历 B (A 和 B 顺序可互换)文章来源地址https://www.toymoban.com/news/detail-591497.html

class Solution {
public:
    int findLength(vector<int>& nums1, vector<int>& nums2) {
        vector<vector<int>> dp(nums1.size() + 1, vector<int>(nums2.size() + 1, 0));
        int result = 0;
        for (int i = 1; i <= nums1.size(); i++) {
            for (int j = 1; j <= nums2.size(); j++) {
                if (nums1[i - 1] == nums2[j - 1]) {
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                }
                if (dp[i][j] > result) result = dp[i][j];
            } 
        }
        return result;
    }
};

到了这里,关于LeetCode | C++ 动态规划——300.最长递增子序列、674. 最长连续递增序列、718. 最长重复子数组的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【LeetCode动态规划#14】子序列系列题(最长递增子序列、最长连续递增序列、最长重复子数组、最长公共子序列)

    力扣题目链接(opens new window) 给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。 子序列是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。 示例 1: 输入:nums = [10,9,2,5,3,7,101,18] 输出

    2024年02月01日
    浏览(55)
  • leetcode300. 最长递增子序列 子序列(不连续)

    https://leetcode.cn/problems/longest-increasing-subsequence/ 给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。 子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。 LIS即最长上升子序列,指

    2024年02月14日
    浏览(41)
  • 【Leecode】674. 最长连续递增序列

    Given an unsorted array of integers nums , return the length of the longest continuous increasing subsequence (i.e. subarray). The subsequence must be strictly increasing. A continuous increasing subsequence is defined by two indices l and r (l r) such that it is [nums[l], nums[l + 1], ..., nums[r - 1], nums[r]] and for each l = i r , nums[i] nums[i + 1] . E

    2024年02月07日
    浏览(43)
  • 力扣--动态规划300.最长递增子序列

    一开始想到的方法非常低效,但好理解。   思路分析: 使用二维数组 dp 来记录递增子序列的长度信息,其中 dp[i][0] 表示以 nums[i] 结尾的最长递增子序列的长度, dp[i][1] 表示包含 nums[i] 的最长递增子序列的长度。 初始化 dp 数组,将以第一个元素结尾的递增子序列长度置为

    2024年01月24日
    浏览(47)
  • 力扣300:最长递增子序列(Java动态规划+双指针)

    给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。 子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。   示例 1: 输入:nums = [10,9,2,5,3,7,101,18] 输出:4 解释:最长递增子序

    2024年02月12日
    浏览(46)
  • 动态规划9:最长递增子序列、最长连续递增序列、最长重复子数组、最长公共子序列、不相交的线、最长子序和

    例题300: 给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。 子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。 确定dp数组和下标含义 dp[i]表示在第i个元素的最长子序列数

    2024年04月08日
    浏览(43)
  • 【LeetCode: 673. 最长递增子序列的个数 | 动态规划】

    🚀 算法题 🚀 🌲 算法刷题专栏 | 面试必备算法 | 面试高频算法 🍀 🌲 越难的东西,越要努力坚持,因为它具有很高的价值,算法就是这样✨ 🌲 作者简介:硕风和炜,CSDN-Java领域新星创作者🏆,保研|国家奖学金|高中学习JAVA|大学完善JAVA开发技术栈|面试刷题|面经八股文

    2024年02月03日
    浏览(62)
  • 动态规划之最长递增子序列

    leetcode 300 最长递增子序列 1.定义dp数组:dp[i]表示以nums[i]结尾的最长递增子序列的长度。 2.定义递推公式 dp[i] = max(dp[j] + 1, dp[i]) 因为dp[j] + 1中的dp[j]并非是在前一个已经加1的dp[j]的基础之上再加上1。若从初始状态加1,而dp[i]永远保持的是最大的状态,则dp[j] + 1肯定要小一些。

    2024年01月23日
    浏览(42)
  • 动态规划算法 | 最长递增子序列

    通过查阅相关资料 发现动态规划问题一般就是求解最值问题 。这种方法在解决一些问题时应用比较多,比如求最长递增子序列等。 有部分人认为动态规划的核心就是:穷举。因为要求最值,肯定要把所有可行的答案穷举出来,然后在其中找最值。 首先,笔者认为动态规划中

    2024年02月06日
    浏览(53)
  • 【动态规划】求最长递增子序列问题

    最长递增子序列(Longest Increasing Subsequence, LIS ) 子序列:对于任意序列s,它的子序列是通过删除其中零个或多个元素得到的另⼀个序列 注:剩余元素的相对顺序保持不变 给定n个整数组成的序列 s [ 1... n ] s[1...n] s [ 1... n ] ,求最长递增子序列LIS(的长度) 8 3 6 1 3 5 4 7 假设

    2024年02月03日
    浏览(48)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包