ChatGLM2-6B! 我跑通啦!本地部署+微调(windows系统)

这篇具有很好参考价值的文章主要介绍了ChatGLM2-6B! 我跑通啦!本地部署+微调(windows系统)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1. 跑通了啥?

记录一下此时此刻,2023年7月8日22点04,从ChatGLM2-6B在7月4日开放了ptuning到此时此刻,ChatGLM2-6B的微调终于被哥们跑通了!
本地部署ChatGLM2-6B本地进行P-tuning微调,再到最后的模型检测,哥们全跑通了!

2. 咋跑通的?

2.1 ChatGLM2-6B本地部署

这里非常感谢ChatGLM2-6B|开源本地化语言模型这篇博客!因为我布置环境,本地部署完全按照这个博客来的,而且他/她还贴心地帮我把要从huggingface上下载巨慢的内容下载打包好了,真的是爱了!

这里要提醒的是,要注意文件目录严格按照这个博客来,可以免除很多麻烦!
同时这篇文章提到源码修改也是非常有意义的,这和windows系统解析符号有关,后面的模型检测中,可能还会遇见这个错误!

本地部署相对麻烦的环节是pytorch的安装
我也是征战pytorch和tensorflow安装战场多年,虽然我用的服务器很高级,但是在我使用之前就下载了一个cuda是10.2版本,这可把我愁坏了。查阅版本信息可以点这个链接,可以发现10.2GPU最高安装版本是pytorch1.12.1,于是我先头铁下载了这个

conda install pytorch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 cudatoolkit=10.2 -c pytorch 

没想到的是,下载的时候表面上是GPU版本,但是G!!! 下载下来是cpu版的,于是我铤而走险,像赌徒一样,试了试pytorch1.11.0,cuda版本是11.3的

conda install pytorch==1.11.0 torchvision==0.12.0 torchaudio==0.11.0 cudatoolkit=11.3 -c pytorch

令人惊讶的是,成了!!!标志是下载的时候,后面的注释的内容不是cpu**,而是cuda**
所以我大胆推测,pytorch的驱动核心在于,cudatoolkit的版本,只要电脑可以驱动cudatoolkit的版本即可,可以通过尝试这些代码,观察下载内容是 cpu** 还是 cuda**来确定下载的版本是不是正确的。

网上又说,torch最好是2.0.0以上,按照我的经验,不需要! 我transformer的版本是4.30,这是chatglm2-6b要求的,和chatglm-6b不一样。

最后告诉大家一个我尝试的结果:10.2的cuda 应该最高支持到pytorch的1.10.*这个系列

最后在提醒一下大家,按照上述文章,最好每一步都一样,是可以一边成功的。顺序也可以按照上述要求。

年纪大,爱唠叨,说了好几遍最后,但是还有一件事情怕大家疑惑,那就是如果你,conda list,你会发现这个现象:
ChatGLM2-6B! 我跑通啦!本地部署+微调(windows系统),大模型,开源,windows,人工智能,AIGC,gpt
既有一个torch也有一个pytorch,哈哈,而且版本不一样,经过我的观察,torch是通过 pip install -r requirements.txt下载的,pytorch是通过conda下载的,但是两者分别的作用机理,我也不清楚,但是我暂时的结论是,两者不冲突,而且似乎以conda下载那个为主,也希望有懂这个的小伙伴或者大伙伴可以指导一下!

2.2 ChatGLM2-6B本地微调

本地微调要感谢B站up主AI李大鹅!他的视频使用P-Tuning微调Chatglm2-6B,喂饭级教程给了我很大的启发。视频只有6分钟,但是我研究他的内容用了2天吧。下面把我遇到的一些困难和心得介绍一下。

首先是系统问题,这就是我为什么在开头强调这是windows系统的解决方案,因为和linux真的不一样,官方提供的文档,是基于shell脚本的,在windows的cmd不可以直接运行,哪怕是我用git bash 也出现了问题。视频中给出 了一个解决方案——利用.bat文件,可以实现。
train.bat代码如下

set PRE_SEQ_LEN=128
set LR=2e-2

python main.py ^
    --do_train ^
    --train_file train.json ^
    --validation_file dev.json ^
    --preprocessing_num_workers 10 ^
    --prompt_column content ^
    --response_column summary ^
    --overwrite_cache ^
    --model_name_or_path THUDM/chatglm2-6b ^
    --output_dir output/adgen-chatglm2-6b-pt-%PRE_SEQ_LEN%-%LR% ^
    --overwrite_output_dir ^
    --max_source_length 64 ^
    --max_target_length 128 ^
    --per_device_train_batch_size 1 ^
    --per_device_eval_batch_size 1 ^
    --gradient_accumulation_steps 16 ^
    --predict_with_generate ^
    --max_steps 3000 ^
    --logging_steps 10 ^
    --save_steps 1000 ^
    --learning_rate %LR% ^
    --pre_seq_len %PRE_SEQ_LEN% ^
    --quantization_bit 4

当然这里的很多参数是可以调整的。
在cmd中按照如下步骤运行(下面是我的运行步骤,要根据自己的文件目录进行调整)

  1. cd /d E:\openai.wiki\ChatGLM2-6B
  2. conda activate E:\openai.wiki\ChatGLM2-6B\ENV
  3. cd ptuning
  4. train.bat

当然,要注意train.bat中训练文件train.json和推理文件evaluate.json的位置
在运行train.bat时,我出现了一个困恼了我一下午的bug,

RuntimeError: Default process group has not been initialized, please make sure to call
init_process_group.

这个错误我估计很多兄弟应该不会出现,但是因为用的服务器太高级了,三块独立显卡,导致了代码优先进行并行训练,但是这些我不知道该怎么处理,只能去蒙,最后蒙到了一个办法,分享给同样遇到这个问题的朋友
在main.py函数中,添加下列内容
ChatGLM2-6B! 我跑通啦!本地部署+微调(windows系统),大模型,开源,windows,人工智能,AIGC,gpt
这样应该就ok了,真的很神奇!
我还遇见了一个错误

AttributeError: 'Seq2SeqTrainer' object has no attribute 'is_deepspeed_enabled'

这个错误要修改文件在这个目录
ChatGLM2-6B! 我跑通啦!本地部署+微调(windows系统),大模型,开源,windows,人工智能,AIGC,gpt
在840行左右,一个控制学习率的函数中进行修改,我采用非常鲁莽方式
ChatGLM2-6B! 我跑通啦!本地部署+微调(windows系统),大模型,开源,windows,人工智能,AIGC,gpt
直接把判断的上半部分写成了False,这样避开了这个参数的调用。这个问题个人应该没有很好的解决办法,只能祈求自己不会出现这个报错,或者就按照我的方法来,经过我的实践,这是ok的!

我大概训练了2个小时,时间还可以!

训练完了是推理部分,下面是推理evaluate.bat的代码

set PRE_SEQ_LEN=128
set CHECKPOINT=adgen-chatglm2-6b-pt-128-2e-2
set STEP=3000
set NUM_GPUS=1

python main.py ^
    --do_predict ^
    --validation_file dev.json ^
    --test_file dev.json ^
    --overwrite_cache ^
    --prompt_column content ^
    --response_column summary ^
    --model_name_or_path THUDM/chatglm2-6b ^
    --ptuning_checkpoint ./output/%CHECKPOINT%/checkpoint-%STEP% ^
    --output_dir ./output/%CHECKPOINT% ^
    --overwrite_output_dir ^
    --max_source_length 64 ^
    --max_target_length 64 ^
    --per_device_eval_batch_size 1 ^
    --predict_with_generate ^
    --pre_seq_len %PRE_SEQ_LEN% ^
    --quantization_bit 4

推理过程,很快,而且0bug,幸福!

最后是模型检测阶段
model_test.py代码如下(这是要自己写的,补充进去)(注意地址需要修改)

from transformers import AutoConfig,AutoModel,AutoTokenizer
import os,torch

CHECKPOINT_PATH = "E:\openai.wiki\ChatGLM2-6B\ptuning\output/adgen-chatglm2-6b-pt-128-2e-2\checkpoint-3000"

# 载入Tokenizer
tokenizer = AutoTokenizer.from_pretrained('THUDM/chatglm2-6b',trust_remote_code = True)

# 加载P-Tuning的checkpoint
config = AutoConfig.from_pretrained("THUDM/chatglm2-6b",trust_remote_code = True,pre_seq_len=128)
model = AutoModel.from_pretrained("THUDM/chatglm2-6b",config=config,trust_remote_code = True)
prefix_state_dict = torch.load(os.path.join(CHECKPOINT_PATH,'pytorch_model.bin'))
print(prefix_state_dict)
new_prefix_state_dict = {}
for k,v in prefix_state_dict.items():
    if k.startswith('transformers.prefix_encoder.'):
        new_prefix_state_dict[k[len('transformers.prefix_encoder.'):]] = v
model.transformer.prefix_encoder.load_state_dict(new_prefix_state_dict,False)

model = model.half().cuda()
model.transformer.prefix_encoder.float().cuda()
model = model.eval()
response,history = model.chat(tokenizer,'宽松的衣服质感如何',history=[])
print(response)

可以观察到CHECKPOINT_PATH = "E:\openai.wiki\ChatGLM2-6B\ptuning\output/adgen-chatglm2-6b-pt-128-2e-2\checkpoint-3000"中很细节的把\adgen** 修改成了/adgen**,就是第一篇博客中提到转义问题。
这是遇到的最后一个问题,
ChatGLM2-6B! 我跑通啦!本地部署+微调(windows系统),大模型,开源,windows,人工智能,AIGC,gpt
因为AI李大鹅提供的源代码中,下面这一句是没有False的。
model.transformer.prefix_encoder.load_state_dict(new_prefix_state_dict,False)
没有False我就会出现上述的报错。所以我还是一种选择忽略错误的方式,在结尾加了一个False。这不影响最后的运行和加载。
最后成功的标志:
ChatGLM2-6B! 我跑通啦!本地部署+微调(windows系统),大模型,开源,windows,人工智能,AIGC,gpt

2.3 小结

使用大模型,就会遇见这些各种各样的问题,这既让我体会到了python这种脚本语言的便捷,同时让我感受到了版本的混乱,而且这种别人写好的代码,如何进行debug,我认为这是未来走向工作岗位或者科研岗,非常重要的技能!
以上内容也仅仅是我自己遇见的问题,可能还会有别的问题,可能试着按照我这种忽略法来解决,毕竟,能跑起来就行!结果慢慢考虑。

3. 打算做什么?

有了这套技术,我的下一步目标就是,收集土建行业数据,构建土建行业大模型。我了解的还不够深入,看论坛看到了一些炫酷的名词,比如历史遗忘等等,暂时我也不懂这些,希望在下一步的研究中,可以继续深入研究,加油!
欢迎小伙伴和大伙伴们可以积极留言自己搞这一套遇到的问题,我可以尽力帮助大家,同时收集大家的问题,让大模型的门槛越来越低!真正走向大众!文章来源地址https://www.toymoban.com/news/detail-592007.html

到了这里,关于ChatGLM2-6B! 我跑通啦!本地部署+微调(windows系统)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • ChatGLM-6B 在 ModelWhale和本地 平台的部署与微调教程

    ChatGLM-6B 是一个开源的、支持中英双语的对话语言模型,基于 General Language Model (GLM) 架构,具有 62 亿参数。结合模型量化技术,用户可以在消费级的显卡上进行本地部署(INT4 量化级别下最低只需 6GB 显存)。 ChatGLM-6B 使用了和 ChatGPT 相似的技术,针对中文问答和对话进行了优

    2024年02月09日
    浏览(43)
  • chatglm2-6b在P40上做LORA微调

    目前,大模型的技术应用已经遍地开花。最快的应用方式无非是利用自有垂直领域的数据进行模型微调。chatglm2-6b在国内开源的大模型上,效果比较突出。本文章分享的内容是用chatglm2-6b模型在集团EA的P40机器上进行垂直领域的LORA微调。 github: https://github.com/THUDM/ChatGLM2-6B ch

    2024年02月10日
    浏览(46)
  • 基于 P-Tuning v2 进行 ChatGLM2-6B 微调实践

    1. SFT监督微调:适用于在源任务中具有较高性能的模型进行微调,学习率较小。常见任务包括中文实体识别、语言模型训练、UIE模型微调。优点是可以快速适应目标任务,但缺点是可能需要较长的训练时间和大量数据。 2. LoRA微调:通过高阶矩阵秩的分解减少微调参数量,不

    2024年02月08日
    浏览(60)
  • chatglm2-6b在P40上做LORA微调 | 京东云技术团队

    目前,大模型的技术应用已经遍地开花。最快的应用方式无非是利用自有垂直领域的数据进行模型微调。chatglm2-6b在国内开源的大模型上,效果比较突出。本文章分享的内容是用chatglm2-6b模型在集团EA的P40机器上进行垂直领域的LORA微调。 github: https://github.com/THUDM/ChatGLM2-6B ch

    2024年02月09日
    浏览(45)
  • 手把手带你实现ChatGLM2-6B的P-Tuning微调

    参考文献:chatglm2ptuning 注意问题1:AttributeError: ‘Seq2SeqTrainer’ object has no attribute \\\'is_deepspeed_enabl torch.distributed.elastic.multiprocessing.errors.ChildFailedError: 可能是版本太高,可以参考chatglm2的环境 1. ChatGLM2-6B的P-Tuning微调 ChatGLM2-6B :https://github.com/THUDM/ChatGLM2-6B 模型地址 :https://hug

    2024年02月17日
    浏览(57)
  • 【ChatGLM_02】LangChain知识库+Lora微调chatglm2-6b模型+提示词Prompt的使用原则

    运行langchain-ChatGLM-master下面的webui.py文件 (1) 配置知识库 新建知识库 向知识库当中添加文件 支持上传的数据格式:word、pdf、excel、csv、txt、文件夹等。但是此处我试了一下 (2) 文档数据测试 word文档测试: (3) 知识库测试模式 知识库测试只会返回输入内容在当前知识库当中的

    2024年02月14日
    浏览(42)
  • ChatGLM2-6B 大语言模型本地搭建

    ChatGLM2-6B 是清华 NLP 团队于不久前发布的中英双语对话模型,它具备了强大的问答和对话功能。拥有最大32K上下文,并且在授权后可免费商用! ChatGLM2-6B的6B代表了训练参数量为60亿,同时运用了模型量化技术,意味着用户可以在消费级的显卡上进行本地部署(INT4 量化级别下

    2024年01月21日
    浏览(57)
  • ChatGLM2-6B 部署

    这是ChatGLM2-6B 部署的阅读笔记,主要介绍了ChatGLM2-6B模型的部署和一些原理的简单解释。 它是单卡开源的对话模型。 充分的中英双语预训练 较低的部署门槛 FP16半精度下,需要至少13G的显存进行推理,甚至可以进一步降低到10G(INT8)和6G(INT4) 更长的序列长度 ChatGLM-6B 序列长度达

    2024年02月09日
    浏览(55)
  • ChatGLM2-6B下载与部署

    我们首先来看一下 ChatGLM2-6B 模型的 requirements : 可以看到,要求 torch=2.0 ,这就产生了一个问题: torch 与 cuda 版本的匹配问题。本地机器中 CUDA=10.0 ,于是在费了半天时间配置好 ChatGLM2-6B 所需环境,从 github 和 huggingface 下载好了 ChatGLM2-6B 模型,但是在 run 的过程中报错 Torch

    2024年02月06日
    浏览(68)
  • 阿里云部署 ChatGLM2-6B 与 langchain+ChatGLM

    更新系统 安装git 克隆 ChatGLM2-6B 源码 克隆 chatglm2-6b 模型 安装 ChatGLM2-6B 依赖 修改模型的路径 修改成 启动服务 启动成功后 克隆 langchain-ChatGLM 源码 git clone https://github.com/imClumsyPanda/langchain-ChatGLM.git 克隆模型 安装 langchain-ChatGLM 依赖 修改配置 修改一 修改成 修改二 修改成 修改

    2024年02月15日
    浏览(50)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包