YOLOV5训练时找不到lables标签

这篇具有很好参考价值的文章主要介绍了YOLOV5训练时找不到lables标签。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

出现这种问题一般都是一下这几点原因,现在教大家如何解决,逐个排除。

第一点:先查看自己的.yaml文件中添加的数据路径中的文件中的图片路径是否正确。

这个一般是有两种添加方法,一个是直接添加图片的文件夹路径,这种方法出现无labels的情况一般就不是这里的问题。

另一种方法是添加train.txt文本文件,train.txt中的文件内容是用于训练的图片路径,检查train.txt文件中的图片路径是否正确。

第二点:

        在项目中找到datasets.py文件,此文件在utils下。

        在datasets.py文件中找到img2label_paths(img_paths)函数,如下。

        

def img2label_paths(img_paths):
    # Define label paths as a function of image paths
    sa, sb = f'{os.sep}images{os.sep}', f'{os.sep}labels{os.sep}'  # /images/, /labels/ substrings
    return [sb.join(x.rsplit(sa, 1)).rsplit('.', 1)[0] + '.txt' for x in img_paths]

将images改成自己的图片所在的文件夹名称,labels同理。

最后删掉生成的.cache文件。重新train,看是否解决。

出现这种问题最可能的原因就是以上所说的两点,出现问题先别乱叫,仔细查看路径,仔细查看路径,仔细查看路径,确定都没有错误的时候在乱叫。文章来源地址https://www.toymoban.com/news/detail-593627.html

到了这里,关于YOLOV5训练时找不到lables标签的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 如何运用yolov5训练自己的数据(手把手教你学yolo)

    在这篇博文中,我们对YOLOv5模型进行微调,用于自定义目标检测的训练和推理。 深度学习领域在2012年开始快速发展。在那个时候,这个领域还比较独特,编写深度学习程序和软件的人要么是深度学习实践者,要么是在该领域有丰富经验的研究人员,或者是具备优秀编码技能

    2024年02月07日
    浏览(141)
  • 基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的动物识别系统(Python+PySide6界面+训练代码)

    摘要:本博客文章深入解析了基于深度学习的动物识别系统的完整代码,并展示了采用领先的YOLOv8算法的实现代码。该系统与YOLOv7、YOLOv6、YOLOv5等早期版本的性能进行了比较,可以从静态图像到实时视频流的各种媒介中识别动物的高效性和准确性。文章不仅详尽地阐释了YOL

    2024年03月27日
    浏览(50)
  • 基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的疲劳驾驶检测系统(Python+PySide6界面+训练代码)

    摘要:本研究详述了一种采用深度学习技术的疲劳驾驶检测系统,该系统集成了最新的YOLOv8算法,并与YOLOv7、YOLOv6、YOLOv5等早期算法进行了性能评估对比。该系统能够在各种媒介——包括图像、视频文件、实时视频流及批量文件中——准确地识别疲劳驾驶行为。文章深入阐述

    2024年04月24日
    浏览(101)
  • 基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的快递包裹检测系统(Python+PySide6界面+训练代码)

    摘要:本文介绍了一种基于深度学习的快递包裹检测系统的代码,采用最先进的YOLOv8算法并对比YOLOv7、YOLOv6、YOLOv5等算法的结果,能够准确识别图像、视频、实时视频流以及批量文件中的快递包裹。文章详细解释了YOLOv8算法的原理,并提供了相应的Python实现代码、训练数据集

    2024年03月28日
    浏览(54)
  • 基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的布匹缺陷检测系统(Python+PySide6界面+训练代码)

    摘要:本文介绍了一种基于深度学习的布匹缺陷检测系统的代码,采用最先进的YOLOv8算法并对比YOLOv7、YOLOv6、YOLOv5等算法的结果,能够准确识别图像、视频、实时视频流以及批量文件中的布匹缺陷。文章详细解释了YOLOv8算法的原理,并提供了相应的Python实现代码、训练数据集

    2024年03月15日
    浏览(67)
  • pycharm配置anaconda环境时找不到python.exe

    问题描述 : 在一台新电脑上配置anaconda环境时,发现pycharm在设置解释器时,在conda环境中找不到anaconda已经创建好的python解释器可执行文件,其显示如下:  只显示创建的虚拟环境中的那些文件夹: 搜了半天总结出问题:pycharm版本过新。 解决方法: 在选择环境时,选择系统

    2024年02月08日
    浏览(69)
  • 基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的生活垃圾检测与分类系统(Python+PySide6界面+训练代码)

    摘要:本篇博客详细讲述了如何利用深度学习构建一个生活垃圾检测与分类系统,并且提供了完整的实现代码。该系统基于强大的YOLOv8算法,并进行了与前代算法YOLOv7、YOLOv6、YOLOv5的细致对比,展示了其在图像、视频、实时视频流和批量文件处理中识别生活垃圾的准确性。文

    2024年04月29日
    浏览(41)
  • YOLO系列梳理(三)YOLOv5

    前言   YOLOv5 是在 YOLOv4 出来之后没多久就横空出世了。今天笔者介绍一下 YOLOv5 的相关知识。目前 YOLOv5 发布了新的版本,6.0版本。在这里,YOLOv5 也在5.0基础上集成了更多特性,同时也对模型做了微调,并且优化了模型大小,减少了模型的参数量。那么这样,就更加适合移动

    2024年02月05日
    浏览(44)
  • 基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的玉米病虫害检测系统(Python+PySide6界面+训练代码)

    摘要:本文介绍了一种基于深度学习的玉米病虫害检测系统系统的代码,采用最先进的YOLOv8算法并对比YOLOv7、YOLOv6、YOLOv5等算法的结果·,能够准确识别图像、视频、实时视频流以及批量文件中的玉米病虫害。文章详细解释了YOLOv8算法的原理,并提供了相应的Python实现代码、

    2024年02月22日
    浏览(54)
  • pycharm使用conda创建的虚拟环境时找不到python.exe

    问题:在创建的虚拟环境中没有找到python.exe文件  解决方案:可能是condaba版本不一样,新版本选不到.exe文件 在anaconda软件的安装目录下选择condabin——conda.bat 然后加载环境,就可以选择创建的虚拟环境了  

    2024年02月04日
    浏览(49)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包