机器学习之生成式模型与判别式模型的区别

这篇具有很好参考价值的文章主要介绍了机器学习之生成式模型与判别式模型的区别。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

根本区别在于是否计算了联合分布 P ( X , Y ) P(X,Y) P(X,Y)和是否比较了模型输出的概率大小.文章来源地址https://www.toymoban.com/news/detail-594076.html

生成式模型的特点

  • 对联合分布进行建模,然后通过朴素贝叶斯来求条件概率,选择使得条件概率最大的 Y Y Y
  • 可以还原出联合概率分布 P ( X , Y ) P(X,Y) P(X,Y)
  • 学习收敛速度快,当样本容量增加时,学到的模型可以更快地收敛于真实模型
  • 应对存在隐变量(不可观测的变量)的场景
  • 相比于判别式模型,往往模型效果差一些
  • 学习到的数据本身信息更多,能反应数据本身特性
  • 学习成本较高,需要更多的计算资源
  • 需要的样本数更多,样本较少时学习效果较差

判别式模型的特点

  • 不能还原出联合概率分布 P ( X , Y ) P(X,Y) P(X,Y)
  • 不能处理存在隐变量的场景
  • 由于直接学习的是条件概率 P ( X ∣ Y ) P(X|Y) P(XY)或者决策函数 f ( X ) f(X) f(X),往往学习的准确率更高
  • 由于直接学习的是 P ( X ∣ Y ) P(X|Y) P(XY)或者 f ( X ) f(X) f(X),可以对数据进行各种程序熵的抽象、定义特征并使用特征,可以简化学习问题
  • 对条件概率建模,学习不同类别之间的最优边界
  • 捕捉不同类别特征的差异信息,不学习本身分布信息,无法反映数据本身特性
  • 学习成本较低,需要的计算资源较少
  • 需要的样本数可以较少,少样本也能很好学习

典型的模型

  • 常见的判别式模型有:线性回归、限行判别分析、SVM、神经网络、K近邻、决策树、最大熵模型、boosting、条件随机场
  • 常见的生成式模型: HMM、朴素贝叶斯、GMM、LDA等

到了这里,关于机器学习之生成式模型与判别式模型的区别的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 机器学习之逻辑回归模型

            逻辑回归(Logistic Regression, LR)又称为逻辑回归分析,是一种机器学习算法,属于分类和预测算法中的一种,主要用于解决二分类问题。逻辑回归通过历史数据的表现对未来结果发生的概率进行预测。例如,我们可以将购买的概率设置为因变量,将用户的特征属性,

    2024年02月09日
    浏览(49)
  • 机器学习之常用的回归预测模型

    本文全面整理了各种回归预测模型,旨在帮助读者更好地学习回归预测模型。 转载自:https://mp.weixin.qq.com/s/7m2waIASOEg90NONgRpQFQ 线性回归是一种线性模型,通过特征的线性组合来预测连续值标签。线性回归通过拟合系数 (可选择是否设置截距)的线性模型,以最小化真实值和预

    2024年04月08日
    浏览(42)
  • 机器学习笔记之生成模型综述(一)生成模型介绍

    从本节开始,将介绍 生成模型 的相关概念。 生成模型,单从名字角度,可以将其认识为: 生成样本的模型 。从流程的角度,它可以理解为: 给定一个 数据集合 ,基于该数据集合进行建模,并通过 数据集合 学习出模型的参数信息; 根据已学习出的 参数信息 ,使用模型构

    2024年02月05日
    浏览(41)
  • 机器学习/深度学习常见算法实现(秋招版)

    包括BN层、卷积层、池化层、交叉熵、随机梯度下降法、非极大抑制、k均值聚类等秋招常见的代码实现。

    2024年02月17日
    浏览(46)
  • 【秋招】算法岗的八股文之机器学习

    推荐链接: 阿秀的学习笔记 JavaGuide中常见面试题总结 机器学习面试笔试求职必备八股文 朴素贝叶斯模型(naive bayes) 随机森林 – Random Forest | RF 特征归一化 的意义:特征归一化是数据预处理中重要技术。因为 特征间的单位(尺度)可能不同 ,为了便于后续的下游任务中特

    2024年02月13日
    浏览(36)
  • 【GPT】文本生成任务(生成摘要、文本纠错、机器翻译等的模型微调)

    NLG:自然语言生成任务,很多NLP任务可以被描述为NLG任务,如经典的T5模型(text to text transfer transformer模型)就是NLG模型,如文本纠错任务,输出正确的文本描述、智能问答根据一定背景进行推理,然后回答。 主要分为三种: 抽取式摘要:从原文档中提取现成的句子作为摘要

    2023年04月26日
    浏览(55)
  • AI、机器学习、大模型、生成式 AI 和安全

    最近 ChatGPT 很火, 安全圈有不少大咖们写了文章介绍 ChatGPT 和安全, 感觉都说 ChatGPT 要颠覆了我们这个时代。我最近也在学习相关的知识, 参加了不少会议, 现在也想总结一下, 说说自己的看法。 首先 Chat GPT 只是生成式 AI 的一种, 然后生成式 AI 又是使用大模型进行推理运算的。

    2024年02月09日
    浏览(35)
  • 机器学习笔记 - 学习图像生成模型在医疗行业用例的思路

            合成图像生成是使用算法或模拟来替换真实世界数据创建新图像的过程。         与数据隐私、有限的数据可用性、数据标签、无效的数据治理、高成本以及对大量数据的需求相关的挑战正在推动使用合成数据来满足各行各业对人工智能解决方案的高需求。

    2024年02月09日
    浏览(56)
  • (具体解决方案)训练GAN深度学习的时候出现生成器loss一直上升但判别器loss趋于0

    今天小陶在训练CGAN的时候出现了绷不住的情况,那就是G_loss(生成器的loss值)一路狂飙,一直上升到了6才逐渐平稳。而D_loss(判别器的loss值)却越来越小,具体的情况就看下面的图片吧。其实这在GAN训练里是非常容易遇到的问题,所以不用慌,是有解决的办法的。小陶就通

    2024年02月14日
    浏览(48)
  • 用特征根判别法判断AR模型的平稳性,再用随机模拟的方法来验证以及做自相关分析

           下面将用这两个栗子来讲解本文的内容,将用到的软件:SPSS、EXCEL 特征根判别法呢,最主要的就是写出模型的差分方程,然后求出其特征根,若其特征根在单位圆内,则该模型就是平稳的 解题如下: 1) ①在excel中生成100个序列数 ②将这100个序列数导入spss中 ③点击

    2024年02月08日
    浏览(91)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包