Python爬虫超详细讲解(零基础入门,老年人都看的懂)

这篇具有很好参考价值的文章主要介绍了Python爬虫超详细讲解(零基础入门,老年人都看的懂)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

本文已收录至Github,推荐阅读 👉 Java随想录

微信公众号:Java随想录

目录
  • 爬虫
  • 为什么我们要使用爬虫
  • 爬虫准备工作
  • 爬虫项目讲解
  • 代码分析
  • 418

先看后赞,养成习惯。
点赞收藏,人生辉煌。

讲解我们的爬虫之前,先概述关于爬虫的简单概念(毕竟是零基础教程)

爬虫

网络爬虫(又被称为网页蜘蛛,网络机器人)就是模拟浏览器发送网络请求,接收请求响应,一种按照一定的规则,自动地抓取互联网信息的程序。
原则上,只要是浏览器(客户端)能做的事情,爬虫都能够做。

为什么我们要使用爬虫

互联网大数据时代,给予我们的是生活的便利以及海量数据爆炸式的出现在网络中。

过去,我们通过书籍、报纸、电视、广播或许信息,这些信息数量有限,且是经过一定的筛选,信息相对而言比较有效,但是缺点则是信息面太过于狭窄了。不对称的信息传导,以致于我们视野受限,无法了解到更多的信息和知识。

互联网大数据时代,我们突然间,信息获取自由了,我们得到了海量的信息,但是大多数都是无效的垃圾信息。例如新浪微博,一天产生数亿条的状态更新。

在如此海量的信息碎片中,我们如何获取对自己有用的信息呢?

答案是筛选!

通过某项技术将相关的内容收集起来,再分析筛选才能得到我们真正需要的信息。

这个信息收集分析整合的工作,可应用的范畴非常的广泛,无论是生活服务、出行旅行、金融投资、各类制造业的产品市场需求等等……都能够借助这个技术获取更精准有效的信息加以利用。

网络爬虫技术,虽说有个诡异的名字,本能第一反应是那种软软的蠕动的生物,但它却是一个可以在虚拟世界里,无往不前的利器

爬虫准备工作

我们平时都说Python爬虫,其实这里可能有个误解,爬虫并不是Python独有的,可以做爬虫的语言有很多例如:PHP,JAVA,C#,C++,Python,选择Python做爬虫是因为Python相对来说比较简单,而且功能比较齐全

首先我们需要下载python,我下载的是官方最新的版本 3.8.3

其次我们需要一个Python的代码编辑器,我用的是Pychram。

下载链接:https://www.jetbrains.com/pycharm/download/#section=windows

我们还需要一些库来支持爬虫的运行(有些库Python可能自带了)

# -*- codeing = utf-8 -*-
from bs4 import BeautifulSoup  #网页解析,获取数据
import re  #正则表达式,进行文字匹配
import urllib.request, urllib.error  #制定URL,获取网页数据
import xlwt  #进行excel操作
import sqlite3 #进行SQLite数据库操作

差不多就是这几个库了,良心的我已经在后面写好注释了。


爬虫运行过程中,不一定就只需要上面几个库,看你爬虫的一个具体写法了,反正需要库的话我们可以直接在setting里面安装)

爬虫项目讲解

我们要爬取的就是这个网站:https://movie.douban.com/top250

我们的爬取的内容是:电影详情链接,图片链接,影片中文名,影片外国名,评分,评价数,概况,相关信息

这边我已经爬取好了,将爬取内容存入xls表中,看一下效果图:

代码分析

先把代码放上来,然后我根据代码逐步解析:

# -*- codeing = utf-8 -*-
from bs4 import BeautifulSoup  # 网页解析,获取数据
import re  # 正则表达式,进行文字匹配`
import urllib.request, urllib.error  # 制定URL,获取网页数据
import xlwt  # 进行excel操作
#import sqlite3  # 进行SQLite数据库操作

findLink = re.compile(r'<a href="(.*?)">')  # 创建正则表达式对象,标售规则   影片详情链接的规则
findImgSrc = re.compile(r'<img.*src="(.*?)"', re.S)
findTitle = re.compile(r'<span class="title">(.*)</span>')
findRating = re.compile(r'<span class="rating_num" property="v:average">(.*)</span>')
findJudge = re.compile(r'<span>(\d*)人评价</span>')
findInq = re.compile(r'<span class="inq">(.*)</span>')
findBd = re.compile(r'<p class="">(.*?)</p>', re.S)


def main():
    baseurl = "https://movie.douban.com/top250?start="  #要爬取的网页链接
    # 1.爬取网页
    datalist = getData(baseurl)
    savepath = "豆瓣电影Top250.xls"    #当前目录新建XLS,存储进去
    # dbpath = "movie.db"              #当前目录新建数据库,存储进去
    # 3.保存数据
    saveData(datalist,savepath)      #2种存储方式可以只选择一种
    # saveData2DB(datalist,dbpath)


# 爬取网页
def getData(baseurl):
    datalist = []  #用来存储爬取的网页信息
    for i in range(0, 10):  # 调用获取页面信息的函数,10次
        url = baseurl + str(i * 25)
        html = askURL(url)  # 保存获取到的网页源码
        # 2.逐一解析数据
        soup = BeautifulSoup(html, "html.parser")
        for item in soup.find_all('div', class_="item"):  # 查找符合要求的字符串
            data = []  # 保存一部电影所有信息
            item = str(item)
            link = re.findall(findLink, item)[0]  # 通过正则表达式查找
            data.append(link)
            imgSrc = re.findall(findImgSrc, item)[0]
            data.append(imgSrc)
            titles = re.findall(findTitle, item)
            if (len(titles) == 2):
                ctitle = titles[0]
                data.append(ctitle)
                otitle = titles[1].replace("/", "")  #消除转义字符
                data.append(otitle)
            else:
                data.append(titles[0])
                data.append(' ')
            rating = re.findall(findRating, item)[0]
            data.append(rating)
            judgeNum = re.findall(findJudge, item)[0]
            data.append(judgeNum)
            inq = re.findall(findInq, item)
            if len(inq) != 0:
                inq = inq[0].replace("。", "")
                data.append(inq)
            else:
                data.append(" ")
            bd = re.findall(findBd, item)[0]
            bd = re.sub('<br(\s+)?/>(\s+)?', "", bd)
            bd = re.sub('/', "", bd)
            data.append(bd.strip())
            datalist.append(data)

    return datalist


# 得到指定一个URL的网页内容
def askURL(url):
    head = {  # 模拟浏览器头部信息,向豆瓣服务器发送消息
        "User-Agent": "Mozilla / 5.0(Windows NT 10.0; Win64; x64) AppleWebKit / 537.36(KHTML, like Gecko) Chrome / 80.0.3987.122  Safari / 537.36"
    }
    # 用户代理,表示告诉豆瓣服务器,我们是什么类型的机器、浏览器(本质上是告诉浏览器,我们可以接收什么水平的文件内容)

    request = urllib.request.Request(url, headers=head)
    html = ""
    try:
        response = urllib.request.urlopen(request)
        html = response.read().decode("utf-8")
    except urllib.error.URLError as e:
        if hasattr(e, "code"):
            print(e.code)
        if hasattr(e, "reason"):
            print(e.reason)
    return html


# 保存数据到表格
def saveData(datalist,savepath):
    print("save.......")
    book = xlwt.Workbook(encoding="utf-8",style_compression=0) #创建workbook对象
    sheet = book.add_sheet('豆瓣电影Top250', cell_overwrite_ok=True) #创建工作表
    col = ("电影详情链接","图片链接","影片中文名","影片外国名","评分","评价数","概况","相关信息")
    for i in range(0,8):
        sheet.write(0,i,col[i])  #列名
    for i in range(0,250):
        # print("第%d条" %(i+1))       #输出语句,用来测试
        data = datalist[i]
        for j in range(0,8):
            sheet.write(i+1,j,data[j])  #数据
    book.save(savepath) #保存

# def saveData2DB(datalist,dbpath):
#     init_db(dbpath)
#     conn = sqlite3.connect(dbpath)
#     cur = conn.cursor()
#     for data in datalist:
#             for index in range(len(data)):
#                 if index == 4 or index == 5:
#                     continue
#                 data[index] = '"'+data[index]+'"'
#             sql = '''
#                     insert into movie250(
#                     info_link,pic_link,cname,ename,score,rated,instroduction,info)
#                     values (%s)'''%",".join(data)
#             # print(sql)     #输出查询语句,用来测试
#             cur.execute(sql)
#             conn.commit()
#     cur.close
#     conn.close()


# def init_db(dbpath):
#     sql = '''
#         create table movie250(
#         id integer  primary  key autoincrement,
#         info_link text,
#         pic_link text,
#         cname varchar,
#         ename varchar ,
#         score numeric,
#         rated numeric,
#         instroduction text,
#         info text
#         )
#
#
#     '''  #创建数据表
#     conn = sqlite3.connect(dbpath)
#     cursor = conn.cursor()
#     cursor.execute(sql)
#     conn.commit()
#     conn.close()

# 保存数据到数据库



if __name__ == "__main__":  # 当程序执行时
    # 调用函数
     main()
    # init_db("movietest.db")
     print("爬取完毕!")

下面我根据代码,从下到下给大家讲解分析一遍

-- codeing = utf-8 --,开头的这个是设置编码为utf-8 ,写在开头,防止乱码。

然后下面 import就是导入一些库,做做准备工作,(sqlite3这库我并没有用到所以我注释起来了)。

下面一些find开头的是正则表达式,是用来我们筛选信息的。(正则表达式用到 re 库,也可以不用正则表达式,不是必须的。)

大体流程分三步走:

  1. 爬取网页
  2. 逐一解析数据
  3. 保存网页

1.爬取网页

先分析流程1,爬取网页,baseurl 就是我们要爬虫的网页网址,往下走,调用了 getData(baseurl) ,我们来看 getData方法:

  for i in range(0, 10):  # 调用获取页面信息的函数,10次
        url = baseurl + str(i * 25)

这段大家可能看不懂,其实是这样的:

因为电影评分Top250,每个页面只显示25个,所以我们需要访问页面10次,25*10=250。

baseurl = "https://movie.douban.com/top250?start="

我们只要在baseurl后面加上数字就会跳到相应页面,比如i=1时

https://movie.douban.com/top250?start=25

我放上超链接,大家可以点击看看会跳到哪个页面,毕竟实践出真知。

然后又调用了askURL来请求网页,这个方法是请求网页的主体方法,怕大家翻页麻烦,我再把代码复制一遍,让大家有个直观感受。

def askURL(url):
    head = {  # 模拟浏览器头部信息,向豆瓣服务器发送消息
        "User-Agent": "Mozilla / 5.0(Windows NT 10.0; Win64; x64) AppleWebKit / 537.36(KHTML, like Gecko) Chrome / 80.0.3987.122  Safari / 537.36"
    }
    # 用户代理,表示告诉豆瓣服务器,我们是什么类型的机器、浏览器(本质上是告诉浏览器,我们可以接收什么水平的文件内容)

    request = urllib.request.Request(url, headers=head)
    html = ""
    try:
        response = urllib.request.urlopen(request)
        html = response.read().decode("utf-8")
    except urllib.error.URLError as e:
        if hasattr(e, "code"):
            print(e.code)
        if hasattr(e, "reason"):
            print(e.reason)
    return html

这个askURL就是用来向网页发送请求用的,那么这里就有老铁问了,为什么这里要写个head呢?

这是因为我们要是不写的话,访问某些网站的时候会被认出来爬虫,显示错误,错误代码 。

418

这是一个梗大家可以百度下,

418 I'm a teapot

The HTTP 418 I'm a teapot client error response code indicates that
the server refuses to brew coffee because it is a teapot. This error
is a reference to Hyper Text Coffee Pot Control Protocol which was an
April Fools' joke in 1998.

我是一个茶壶

所以我们需要 “装” ,装成我们就是一个浏览器,这样就不会被认出来,伪装一个身份。

来,我们继续往下走,

html = response.read().decode("utf-8")

这段就是我们读取网页的内容,设置编码为utf-8,目的就是为了防止乱码。访问成功后,来到了第二个流程:

2.逐一解析数据

解析数据这里我们用到了 BeautifulSoup(靓汤) 这个库,这个库是几乎是做爬虫必备的库,无论你是什么写法。

下面就开始查找符合我们要求的数据,用BeautifulSoup的方法以及 re 库的正则表达式去匹配:

findLink = re.compile(r'<a href="(.*?)">')  # 创建正则表达式对象,标售规则   影片详情链接的规则
findImgSrc = re.compile(r'<img.*src="(.*?)"', re.S)
findTitle = re.compile(r'<span class="title">(.*)</span>')
findRating = re.compile(r'<span class="rating_num" property="v:average">(.*)</span>')
findJudge = re.compile(r'<span>(\d*)人评价</span>')
findInq = re.compile(r'<span class="inq">(.*)</span>')
findBd = re.compile(r'<p class="">(.*?)</p>', re.S)

匹配到符合我们要求的数据,然后存进dataList, 所以 dataList 里就存放着我们需要的数据了。

最后一个流程:

3.保存数据

 # 3.保存数据
saveData(datalist,savepath)      #2种存储方式可以只选择一种
# saveData2DB(datalist,dbpath)

保存数据可以选择保存到 xls 表, 需要(xlwt库支持)

也可以选择保存数据到 sqlite数据库, 需要(sqlite3库支持)

这里我选择保存到 xls 表 ,这也是为什么我注释了一大堆代码,注释的部分就是保存到 sqlite 数据库的代码,二者选一就行。

保存到 xls 的主体方法是 saveData (下面的saveData2DB方法是保存到sqlite数据库):

def saveData(datalist,savepath):
    print("save.......")
    book = xlwt.Workbook(encoding="utf-8",style_compression=0) #创建workbook对象
    sheet = book.add_sheet('豆瓣电影Top250', cell_overwrite_ok=True) #创建工作表
    col = ("电影详情链接","图片链接","影片中文名","影片外国名","评分","评价数","概况","相关信息")
    for i in range(0,8):
        sheet.write(0,i,col[i])  #列名
    for i in range(0,250):
        # print("第%d条" %(i+1))       #输出语句,用来测试
        data = datalist[i]
        for j in range(0,8):
            sheet.write(i+1,j,data[j])  #数据
    book.save(savepath) #保存

创建工作表,创列(会在当前目录下创建):

 sheet = book.add_sheet('豆瓣电影Top250', cell_overwrite_ok=True) #创建工作表
 col = ("电影详情链接","图片链接","影片中文名","影片外国名","评分","评价数","概况","相关信息")

然后把 dataList里的数据一条条存进去就行。最后运作成功后,会在左侧生成这么一个文件:

打开之后看看是不是我们想要的结果:

成了,成了!

如果我们需要以数据库方式存储,可以先生成 xls 文件,再把 xls 文件导入数据库中,就可以啦

我也在不断的学习中,学到新东西第一时间会跟大家分享,大家可以动动小手,点波关注不迷路。


本篇文章就到这里,感谢阅读,如果本篇博客有任何错误和建议,欢迎给我留言指正。文章持续更新,可以关注公众号第一时间阅读。
文章来源地址https://www.toymoban.com/news/detail-594336.html

到了这里,关于Python爬虫超详细讲解(零基础入门,老年人都看的懂)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • ChatGPT在机器人护理和老年人支持中的潜在角色如何?

    机器人在护理和老年人支持领域有着巨大的潜力,可以提供多种服务和支持,改善老年人的生活质量,并减轻护理工作者和家庭成员的负担。在这篇文章中,我将探讨机器人在这一领域的潜在角色,包括其应用、优势和挑战。 ## 1. 护理机器人的应用 ### a. 日常生活支持 护理机

    2024年02月09日
    浏览(38)
  • 基于微信小程序社区老年人健康医疗信息服务平台设计与实现

    作者主页:编程千纸鹤 作者简介:Java、前端、Python开发多年,做过高程,项目经理,架构师 主要内容:Java项目开发、Python项目开发、大学数据和AI项目开发、单片机项目设计、面试技术整理、最新技术分享 收藏点赞不迷路  关注作者有好处 文末获得源码 语言环境:Java: 

    2024年04月25日
    浏览(68)
  • Java基于微信小程序的社区老年人体检管理系统(源码+LW)

    💗博主介绍:✌全网粉丝10W+,CSDN全栈领域优质创作者,博客之星、掘金/华为云/阿里云等平台优质作者。 👇🏻 精彩专栏 推荐订阅👇🏻 计算机毕业设计精品项目案例-200套 🌟 文末获取源码+数据库+文档 🌟 感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编

    2024年01月15日
    浏览(43)
  • 微信小程序毕业设计作品成品(84)微信小程序老年人健康监测系统设计与实现

    博主介绍:《Vue.js入门与商城开发实战》《微信小程序商城开发》图书作者,CSDN博客专家,在线教育专家,CSDN钻石讲师;专注大学生毕业设计教育和辅导。 所有项目都配有从入门到精通的基础知识视频课程,免费 项目配有对应开发文档、开题报告、任务书、PPT、论文模版等

    2024年02月08日
    浏览(46)
  • 科研学习|论文解读——老年人对生活的支配与日常生活信息寻求行为之间的关联:皮尤研究中心的信息参与和信息谨慎调查数据分析

    题目: Associations between mastery of life and everyday life information-seeking behavior among older adults: Analysis of the Pew Research Center\\\'s information engaged and information wary survey data 人口老龄化是一个全球现象。(现实背景) 老年人的信息搜寻行为可能在促进老年人健康老龄化方面发挥重要作用。(

    2024年01月19日
    浏览(61)
  • 4.Python从入门到精通—Python 基础语法详细讲解-下

    Python中的输入输出和文件操作是编程中非常常见和重要的部分。下面我会详细讲解Python中的输入输出和文件操作。 Python中的输入输出通常使用input()和print()函数。 输入 input()函数用于从控制台获取用户输入的数据。它的基本用法如下: 其中,prompt是可选的字符串参数,用于向

    2024年03月16日
    浏览(49)
  • Python爬虫讲解(超详细)

    Python爬虫 是一种通过编写程序 自动从互联网上获取数据 的技术。下面是Python爬虫的详解:           爬虫的基本原理是 通过模拟浏览器的行为 ,访问目标网站,并获取目标页面中的数据。Python爬虫可以使用requests库来发送HTTP请求,使用BeautifulSoup库或正则表达式等工具

    2024年02月06日
    浏览(36)
  • 爬虫入门到精通_基础篇1(爬虫基本原理讲解, Urllib库基本使用)

    发起请求:通过HTTP库向目标站点发起请求,即发送一个Request,请求可以包含额外的headers等信息,等待服务器响应。 获取响应内容:如果服务器能正常响应,会得到一个Response,Response的内容便是所要获取的页面内容,类型可能有HTML,Json字符串,二进制数据(如图片视频)等类型。

    2024年01月23日
    浏览(42)
  • 【爬虫】python爬虫爬取网站页面(基础讲解)

    👉博__主👈:米码收割机 👉技__能👈:C++/Python语言 👉公众号👈:测试开发自动化【获取源码+商业合作】 👉荣__誉👈:阿里云博客专家博主、51CTO技术博主 👉专__注👈:专注主流机器人、人工智能等相关领域的开发、测试技术。 1. 导入必要的库 requests 库用于发送HTTP请

    2024年02月08日
    浏览(45)
  • 详解爬虫基本知识及入门案列(爬取豆瓣电影《热辣滚烫》的短评 详细讲解代码实现)

    目录 前言什么是爬虫? 爬虫与反爬虫基础知识 一、网页基础知识  二、网络传输协议 HTTP(HyperText Transfer Protocol)和HTTPS(HTTP Secure)请求过程的原理? 三、Session和Cookies Session Cookies Session与Cookies的区别与联系  四、Web服务器Nginx 五、代理IP 1、代理IP的原理 2. 分类 3. 获取途

    2024年04月29日
    浏览(65)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包