高性能网络设计秘笈:深入剖析Linux网络IO与epoll

这篇具有很好参考价值的文章主要介绍了高性能网络设计秘笈:深入剖析Linux网络IO与epoll。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

本文分享自华为云社区《高性能网络设计秘笈:深入剖析Linux网络IO与epoll》,作者: Lion Long 。

一、epoll简介

epoll是Linux内核中一种可扩展的IO事件处理机制,可替代select和poll的系统调用。处理百万级并发访问性能更佳。

二、select的局限性

(1) 文件描述符越多,性能越差。 单个进程中能够监视的文件描述符存在最大的数量,默认是1024(在linux内核头文件中定义有 #define _FD_SETSIZE 1024),当然也可以修改,但是文件描述符数量越多,性能越差。

(2)开销巨大 ,select需要复制大量的句柄数据结构,产生了巨大的开销(内核/用户空间内存拷贝问题)。

(3)select需要遍历整个句柄数组才能知道哪些句柄有事件。

(4)如果没有完成对一个已经就绪的文件描述符的IO操作,那么每次调用select还是会将这些文件描述符通知进程,即水平触发。

(5)poll使用链表保存监视的文件描述符,虽然没有了监视文件数量的限制,但是其他缺点依旧存在。

由于以上缺点,基于select模型的服务器程序,要达到十万以上的并发访问,是很难完成的。因此,epoll出场了。

三、epoll的优点

(1)不需要轮询所有的文件描述符

(2)每次取就绪集合,都在固定位置

(3)事件的就绪和IO触发可以异步解耦

四、epoll函数原型

4.1、epoll_create(int size)

#include <sys/epoll.h>

int epoll_create(int size);

功能:创建epoll的文件描述符。

参数说明:size表示内核需要监控的最大数量,但是这个参数内核已经不会用到,只要传入一个大于0的值即可。 当size<=0时,会直接返回不可用,这是历史原因保留下来的,最早的epoll_create是需要定义一次性就绪的最大数量;后来使用了链表以便便维护和扩展,就不再需要使用传入的参数。

返回:返回该对象的描述符,注意要使用 close 关闭该描述符。

4.2、epoll_ctl

#include <sys/epoll.h>

int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event);

// epoll_ctl对应系统调用sys_epoll_ctl

功能:操作epoll的文件描述符,主要是对epoll的红黑树节点进行操作,比如节点的增删改查。

参数说明:

4.2.1、event参数说明

struct epoll_event结构体原型

typedef union epoll_data{

void* ptr;

int fd;

uint32_t u32;

uint64_t u64

};

struct epoll_event{

uint32_t events;

epoll_data_t data;

}

events成员代表要监听的epoll事件类型

events成员:

data成员:

data 成员时一个联合体类型,可以在调用 epoll_ctl 给 fd 添加/修改描述符监听的事件时携带一些数据,方便后面的epoll_wait可以取出信息使用。

4.2.2、扩展说明:SYSCALL_DEFINE数字 的宏定义

跟着的数字代表函数需要的参数数量,比如SYSCALL_DEFINE1代表函数需要一个参数、SYSCALL_DEFINE4代表函数需要4个参数。

4.2.3、注意

epoll_ctl是非阻塞的,不会被挂起。

4.3、epoll_wait

函数原型

#include <sys/epoll.h>

int epoll_wait(int epfd, struct epoll_event *events, int maxevents, int timeout);

功能:阻塞一段时间,等待事件发生

返回:返回事件数量,事件集添加到events数组中。也就是遍历红黑树中的双向链表,把双向链表中的节点数据拷贝出来,拷贝完毕后把节点从双向链表中移除。

五、epoll使用步骤

step 1:创建epoll文件描述符

int epfd = epoll_create(1);

step 2:创建struct epoll_event结构体

struct epoll_event ev;

ev.data.fd=listenfd;//保存监听的fd,以便epoll_wait的后续操作

ev.events=EPOLLIN;//设置监听fd的可读事件

step 3:添加事件监听

epoll_ctl(epfd,EPOLL_CTL_ADD,listenfd,&ev);

step 4:等待事件

struct epoll_event events[EVENTS_LENGTH];

char rbuffer[MAX_BUFF]={ 0 };

char wbuffer[MAX_BUFF]={ 0 };

while(1)

{

int nready = epoll_wait(epfd,events,EVENTS_LENGTH,-1);//-1表示阻塞等待

int i=0;

for(i=0;i<nready;i++)

{

int clientfd=events[i].data.fd;

if(clientfd==listenfd)

{

struct sockaddr_in client;

int len=sizeof(client);

int confd=accept(listenfd,(struct sockaddr*)&client,&len);

//step 2:创建struct epoll_event结构体

struct epoll_event evt;

evt.data.fd=confd;//保存监听的fd,以便epoll_wait的后续操作

evt.events=EPOLLIN;//设置监听fd的可读事件

// step 3:添加事件监听

epoll_ctl(epfd,EPOLL_CTL_ADD,confd,&evt);

}

else if(events[i].events &EPOLLIN)

{

int ret = recv(clientfd,rbuffer,MAX_BUFF,0);

if(ret>0)

{

rbuffer[ret]='\0';//剔除干扰数据

printf("recv: %s\n",rbuffer);

memcpy(wbuffer,rbuffer,MAX_BUFF);//拷贝数据,做回传示例

//step 2:创建struct epoll_event结构体

struct epoll_event evt;

evt.data.fd=clientfd;//保存监听的fd,以便epoll_wait的后续操作

evt.events=EPOLLOUT;//设置监听fd的可写事件

// step 3:修改事件监听

epoll_ctl(epfd,EPOLL_CTL_MOD,clientfd,&evt);

}

}

else if(events[i].events &EPOLLOUT)

{

int ret = send(clientfd,wbuffer,MAX_BUFF,0);

printf("send: %s\n",wbuffer);

//step 2:创建struct epoll_event结构体

struct epoll_event evt;

evt.data.fd=clientfd;//保存监听的fd,以便epoll_wait的后续操作

evt.events=EPOLLIN;//设置监听fd的可读事件

// step 3:修改事件监听

epoll_ctl(epfd,EPOLL_CTL_MOD,clientfd,&evt);



}

}

}

六、完整示例代码

#include <stdio.h>

#include <sys/socket.h>

#include <sys/types.h>

#include <netinet/in.h>

#include <fcntl.h>

#include <unistd.h>

#include <pthread.h>

#include <sys/epoll.h>

#include <string.h>

#define BUFFER_LENGTH 128

#define EVENTS_LENGTH 128

char rbuff[BUFFER_LENGTH] = { 0 };

char wbuff[BUFFER_LENGTH] = { 0 };

int main() {

// block

int listenfd = socket(AF_INET, SOCK_STREAM, 0); //

if (listenfd == -1) return -1;

// listenfd

struct sockaddr_in servaddr;

servaddr.sin_family = AF_INET;

servaddr.sin_addr.s_addr = htonl(INADDR_ANY);

servaddr.sin_port = htons(9999);

if (-1 == bind(listenfd, (struct sockaddr*)&servaddr, sizeof(servaddr))) {

return -2;

}

#if 0 // nonblock

int flag = fcntl(listenfd, F_GETFL, 0);

flag |= O_NONBLOCK;

fcntl(listenfd, F_SETFL, flag);

#endif

listen(listenfd, 10);

int epfd = epoll_create(1);

struct epoll_event ev, events[EVENTS_LENGTH];

ev.events = EPOLLIN;

ev.data.fd = listenfd;

epoll_ctl(epfd, EPOLL_CTL_ADD, listenfd, &ev);

printf("epfd : %d\n", epfd);

while (1)

{

int nready = epoll_wait(epfd, events, EVENTS_LENGTH, -1);

printf("nready --> %d\n",nready);

int i;

for (i = 0; i < nready;i++)

{

int clientfd = events[i].data.fd;

if (listenfd == clientfd)

{

// accept

struct sockaddr_in client;

int len = sizeof(client);

int conffd = accept(clientfd, (struct sockaddr*)&client,&len);

printf("conffd --> %d\n",conffd);

ev.events = EPOLLIN;

ev.data.fd = conffd;

epoll_ctl(epfd, EPOLL_CTL_ADD, conffd, &ev);

}

else if(events[i].events & EPOLLIN)//client

{

int ret=recv(clientfd, rbuff, BUFFER_LENGTH, 0);

if (ret > 0)

{

rbuff[ret] = '\0';

printf("recv buffer: %s\n", rbuff);

/*

int j;

for (j = 0; j < BUFFER_LENGTH;j++)

{

buff[j] = 'a' + (j % 26);

}

send(clientfd, buff, BUFFER_LENGTH, 0);

*/

memcpy(wbuff, rbuff, BUFFER_LENGTH);

ev.events = EPOLLOUT;

ev.data.fd = clientfd;

epoll_ctl(epfd, EPOLL_CTL_MOD, clientfd, &ev);

}



}

else if (events[i].events & EPOLLOUT)

{

send(clientfd, wbuff, BUFFER_LENGTH, 0);

printf("send --> %s\n",wbuff);

ev.events = EPOLLIN;

ev.data.fd = clientfd;

epoll_ctl(epfd, EPOLL_CTL_MOD, clientfd, &ev);

}

}

}



return 0;

}

七、epoll的缺点

读写使用相同的缓冲区。比如上述的示例中,wbuffer和rbuffer是使用同一个缓冲区的,所以需要rbuff[ret] = ‘\0’;去除杂数据。

八、水平触发(LT)与边沿触发(ET)

8.1、两者差异

1、水平触发可以一次recv,边沿触发需要用循环来recv;

2、水平触发可以使用阻塞模式,边沿模式不能

3、两者性能差异非常小,一般小数据使用水平触发LT,大数据使用边沿触发ET

4、listen fd最好使用水平触发,尽量不要边沿触发

5、当当recv的buffer小于接受的数据时:

(1)水平触发是只要有数据就一直触发,直到数据读完;

(2)边沿触发是来一次连接触发一次,如果接受数据的buffer不够大,则数据会保留在缓冲区,下次触发继续从缓冲区读出来;

6、一般,水平触发只需要一个recv,边沿触发需要搭配while从缓冲区读完数据

8.2、设置触发模式

默认是水平触发模式,在事件中设置中 | EPOLLET 就可以设置边沿触发,不设置则默认是水平触发。

例如:

ev.events=EPOLL_IN | EPOLLET

九、常见疑惑问题

9.1、为什么提前先定义一个事件?

我们需要注册,内核才会有事件来的时候通知进程。比如生活中要退一个快递,那么我们需要注册一个快递公司的账户,然后发送一个退快递请求时快递公司才能找到你并取快递。

9.2、epoll events超出EVENTS_LENGTH?

epoll会循环拷贝红黑树结构体中的双向链表节点,读取节点数据,直到没有事件。

9.3、缓冲区有多大空间时才返回可读/可写?

只要缓冲区有空间就返回可读、可写,不管空间多少。比如缓冲区是1024,但是有1023有数据了,这种极端条件也会返回可读、可写。

9.4、recv和send放在一起时,有什么问题?

发送给客户端数据很大的时候(大于内核缓冲区),就可能出现send不全,客户端recv不全,最好用EPOLLOUT单独处理发送数据事件。

总结

本文介绍了网络IO模型,引入了epoll作为Linux系统中高性能网络编程的核心工具。通过分析epoll的特点与优势,并给出使用epoll的注意事项和实践技巧,该文章为读者提供了宝贵的指导。通过掌握这些知识,读者能够构建高效、可扩展和稳定的网络应用,提供出色的用户体验。

点击关注,第一时间了解华为云新鲜技术~

 文章来源地址https://www.toymoban.com/news/detail-594369.html

到了这里,关于高性能网络设计秘笈:深入剖析Linux网络IO与epoll的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • C++高性能服务器网络框架设计与实现

    这篇文章将从两个方面来介绍,一个是服务器中的基础的网络通信部件;另外一个是,如何利用这些基础通信部件整合成一个完整的高效的服务器框架。注意:本文以下内容中的客户端是相对概念,指的是连接到当前讨论的服务程序的终端,所以这里的客户端既可能是我们传

    2024年02月04日
    浏览(54)
  • Linux高性能服务器编程 学习笔记 第五章 Linux网络编程基础API

    我们将从以下3方面讨论Linux网络API: 1.socket地址API。socket最开始的含义是一个IP地址和端口对(ip,port),它唯一表示了使用TCP通信的一端,本书称其为socket地址。 2.socket基础API。socket的主要API都定义在sys/socket.h头文件中,包括创建socket、命名socket、监听socket、接受连接、发

    2024年02月07日
    浏览(56)
  • Linux 网络编程学习笔记——十二、高性能 I/O 框架库 Libevent

    在处理 I/O 事件、信号和定时事件时,需要考虑如下三个问题: 统一事件源:很明显,统一处理这三类事件既能使代码简单易懂,又能避免一些潜在的逻辑错误。 可移植性:不同的操作系统具有不同的 I/O 复用方式,比如 Solaris 的 dev/poll 文件,FreeBSD 的 kqueue 机制,Linux 的

    2023年04月08日
    浏览(56)
  • GO 中高效 int 转换 string 的方法与高性能源码剖析

    Go 语言 中,将整数(int)转换为字符串(string)是一项常见的操作。 本文将从逐步介绍几种在 Go 中将 int 转换为 string 的常见方法,并重点剖析这几种方法在性能上的特点。另外,还会重点介绍 FormatInt 高效的算法实现。 最直接且常用的方法是使用 strconv 包中的 Itoa 函数。

    2024年01月21日
    浏览(42)
  • 深入了解 RabbitMQ:高性能消息中间件

    在现代分布式系统中,消息队列成为了实现系统间异步通信、削峰填谷以及解耦组件的重要工具。而RabbitMQ作为一个高效可靠的消息队列解决方案,已经成为许多企业广泛采用的选择。本文将介绍RabbitMQ的基本概念、主要特性以及常见应用场景。 RabbitMQ 是一个开源的高性能、

    2024年02月08日
    浏览(51)
  • 深入详解高性能消息队列中间件 RabbitMQ

      目录 1、引言 2、什么是 RabbitMQ ? 3、RabbitMQ 优势 4、RabbitMQ 整体架构剖析 4.1、发送消息流程 4.2、消费消息流程 5、RabbitMQ 应用 5.1、广播 5.2、RPC VC++常用功能开发汇总(专栏文章列表,欢迎订阅,持续更新...) https://blog.csdn.net/chenlycly/article/details/124272585 C++软件异常排查从入

    2024年02月05日
    浏览(79)
  • SambaNova 芯片:深入解析其架构和高性能秘诀

    原创 AI苏妲己  SambaNova——一家总部位于帕洛阿尔托的公司已经筹集了超过10亿美元的风险投资,不会直接向公司出售芯片。相反,它出售其定制技术堆栈的访问权限,该堆栈具有专门为运行最大的人工智能模型而设计的专有硬件和软件。 最近,SambaNova宣布推出了其新型SN

    2024年04月10日
    浏览(51)
  • “深入理解Redis:高性能缓存和数据存储技术解析“

    标题:深入理解Redis:高性能缓存和数据存储技术解析 摘要:本文将深入探讨Redis作为一种高性能缓存和数据存储技术的原理和用法。我们将从Redis的基本特性入手,介绍其在缓存和数据存储方面的优势,并通过实际示例代码展示如何使用Redis提升应用程序的性能和可靠性。

    2024年02月16日
    浏览(52)
  • “深入理解Redis:高性能缓存与数据存储的秘密“

    标题:深入理解Redis:高性能缓存与数据存储的秘密 在现代应用程序的开发中,缓存和数据存储是非常重要的组成部分。它们不仅可以提高应用程序的性能,还可以减轻数据库和网络的负载。其中,Redis作为一种高性能的内存数据存储系统,因其出色的性能和灵活的特性而备

    2024年02月16日
    浏览(46)
  • “深入解析Redis:高性能缓存与分布式数据存储“

    标题:深入解析Redis:高性能缓存与分布式数据存储 摘要:本文将深入解析Redis,介绍其作为高性能缓存和分布式数据存储的特点和功能,并提供示例代码展示其使用方法。 正文: 一、引言 Redis是一个开源的内存数据结构存储系统,它以其高性能、灵活的数据结构以及丰富的

    2024年02月17日
    浏览(59)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包