文心一言 VS 讯飞星火 VS chatgpt (62)-- 算法导论6.5 1题

这篇具有很好参考价值的文章主要介绍了文心一言 VS 讯飞星火 VS chatgpt (62)-- 算法导论6.5 1题。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

文心一言 VS 讯飞星火 VS chatgpt (62)-- 算法导论6.5 1题

一、试说明 HEAP-EXTRACT-MAX在堆A=(15,13,9,5,12,8,7,4,0,6,2,1)上的操作过程。

文心一言:

HEAP-EXTRACT-MAX 是堆排序算法中的一部分,用于从堆中提取最大值并保持堆的性质。下面是在堆 A=(15, 13, 9, 5, 12, 8, 7, 4, 0, 6, 2, 1) 上执行 HEAP-EXTRACT-MAX 操作的过程:

1.初始化堆的根节点为最大值。在本例中,根节点为 15。

2.将堆的根节点与最后一个元素交换位置,即将 15 交换到堆的末尾。

3.对堆进行堆化操作(heapify),使其满足堆的性质。具体操作如下:

3.1.将堆的最后一个元素(即原来在堆顶的元素)作为新的根节点。

3.2.对新根节点进行堆化操作,即将新根节点的值与其子节点比较,如果子节点的值大于等于新根节点的值,则交换它们的位置。

3.3.重复上述步骤,直到堆满足堆的性质。

在本例中,将 15 交换到堆的末尾后,堆变为 (13, 9, 5, 12, 15, 8, 7, 4, 0, 15, 2)。

对新根节点 15 进行堆化操作,首先将其与其左子节点 13 进行比较,因为左子节点的值大于新根节点的值,所以交换它们的位置,堆变为 (9, 13, 5, 12, 15, 8, 7, 4, 0, 15, 2)。

然后,对新根节点 13 进行堆化操作,将其与右子节点 12 进行比较,因为右子节点的值小于等于新根节点的值,所以不需要交换位置,堆变为 (9, 13, 5, 12, 15, 8, 7, 4, 0, 15, 2)。

最后,对根节点 9 进行堆化操作,将其与其右子节点进行比较,因为右子节点的值小于等于新根节点的值,所以不需要交换位置,堆变为 (9, 13, 5, 12, 15, 8, 7, 4, 0, 15, 2),此时堆满足堆的性质。

执行完 HEAP-EXTRACT-MAX 操作后,堆中最大值已从堆中提取出来,即原来的根节点(15)。同时,堆化操作保证了剩余元素仍然构成一个满足堆性质的堆。

文心一言 VS 讯飞星火 VS chatgpt (62)-- 算法导论6.5 1题,文心一言vschatgpt,算法,chatgpt

讯飞星火:

HEAP-EXTRACT-MAX是一种在堆中进行最大值提取的操作。它从给定的堆A中选择最大的元素并将其返回。

操作过程如下:

1.首先,我们需要确定堆A中的根节点。根节点是堆中的最大值或最小值,可以通过比较所有节点的值来确定。在这个例子中,堆A的根节点是15。

2.接下来,我们需要将根节点与其子节点进行比较。如果根节点不是最大值,那么最大值一定在它的子树中。我们可以将根节点与左子节点进行比较,如果左子节点的值更大,那么最大值就在左子树中。否则,最大值就在右子树中。在这个例子中,15大于其左子节点13和右子节点9,所以最大值在右子树中。

3.现在我们需要找到右子树中的最大值。我们可以递归地对右子树进行相同的操作。在这个例子中,右子树的最大值是12。

4.最后,我们得到了最大值12。因此,HEAP-EXTRACT-MAX在堆A=(15,13,9,5,12,8,7,4,0,6,2,1)上的操作过程就是找到最大值12并将其返回。

文心一言 VS 讯飞星火 VS chatgpt (62)-- 算法导论6.5 1题,文心一言vschatgpt,算法,chatgpt

360智脑:

堆A=(15,13,9,5,12,8,7,4,0,6,2,1)是一个完全二叉树,其中根节点为15,左子树为{13},右子树为{},中叶子节点为9。接下来执行堆-extract-max操作,首先从堆A中弹出最大元素15,然后将该元素从堆A中移除并插入到堆B=({9,12})中形成一个新的堆。最后堆B中的最大值为12,因此堆B的最大值是12。

文心一言 VS 讯飞星火 VS chatgpt (62)-- 算法导论6.5 1题,文心一言vschatgpt,算法,chatgpt

chatglm:

HEAP-EXTRACT-MAX 是堆排序算法中的一个操作,用于从堆中提取最大元素。在堆 A=(15, 13, 9, 5, 12, 8, 7, 4, 0, 6, 2, 1) 上,HEAP-EXTRACT-MAX 的操作过程如下:

1.将堆顶元素 15 与最后一个元素 1 交换位置,得到新的堆 A’=(1, 13, 9, 5, 12, 8, 7, 4, 0, 6, 2, 15)。

2.对新堆 A’进行向下调整操作,使得剩余元素重新构成一个堆。具体来说,从堆顶开始,依次将堆顶元素与它的子节点进行比较,如果子节点小于堆顶元素,则交换堆顶元素和子节点,继续向下调整;否则,直接向下调整一层。重复这个过程,直到所有的子节点都被调整到正确的位置上。

在本例中,向下调整的过程如下:

第一次调整:将堆顶元素 1 与它的子节点 13 进行比较,13 小于 1,所以交换 1 和 13 的位置,得到堆 A’‘=(13, 1, 9, 5, 12, 8, 7, 4, 0, 6, 2, 15)。然后对堆 A’'进行向下调整操作。

第二次调整:将堆顶元素 13 与它的子节点 9 进行比较,9 小于 13,所以不需要交换位置,直接向下调整一层。得到堆 A’‘’=(13, 1, 9, 5, 12, 8, 7, 4, 0, 6, 2, 15)。然后对堆 A’''进行向下调整操作。

第三次调整:将堆顶元素 13 与它的子节点 5 进行比较,5 小于 13,所以不需要交换位置,直接向下调整一层。得到堆 A’‘’‘=(13, 1, 9, 5, 12, 8, 7, 4, 0, 6, 2, 15)。然后对堆 A’‘’'进行向下调整操作。

第四次调整:将堆顶元素 13 与它的子节点 12 进行比较,12 小于 13,所以不需要交换位置,直接向下调整一层。得到堆 A’‘’=(13, 1, 9, 5, 12, 8, 7, 4, 0, 6, 2, 15)。然后对堆 A’''进行向下调整操作。

第五次调整:将堆顶元素 13 与它的子节点 8 进行比较,8 小于 13,所以不需要交换位置,直接向下调整一层。得到堆 A’‘’‘’=(13, 1, 9, 5, 12, 8, 7, 4, 0, 6, 2, 15)。然后对堆 A’‘’''进行向下调整操作。

第六次调整:将堆顶元素 13 与它的子节点 7 进行比较,7 小于 13,所以不需要交换位置,直接向下调整一层。得到堆 A’‘’‘’‘=(13, 1, 9, 5, 12, 8, 7, 4, 0, 6, 2, 15)。然后对堆 A’‘’‘’'进行向下调整操作。

第七次调整:将堆顶元素 13 与它的子节点 4 进行比较,4 小于 13,所以不需要交换位置,直接向下调整一层。得到堆 A’‘’‘’‘’‘=(13, 1, 9, 5, 12, 8, 7, 4, 0, 6, 2, 15)。然后对堆 A’‘’‘’‘’'进行向下调整操作。

第八次调整:将堆顶元素 13 与它的子节点 0 进行比较,0 小于 13,所以不需要交换位置,直接向下调整一层。得到堆 A’‘’‘’‘’‘’=(13, 1, 9, 5, 12, 8, 7, 4, 0, 6, 2, 15)。然后对堆 A’‘’‘’‘’''进行向下调整操作。

第九次调整:将堆顶元素 13 与它的子节点 6 进行比较,6 小于 13,所以不需要交换位置,直接向下调整一层。得到堆 A’‘’‘’‘’‘’‘’=(13, 1

文心一言 VS 讯飞星火 VS chatgpt (62)-- 算法导论6.5 1题,文心一言vschatgpt,算法,chatgpt

文心一言 VS 讯飞星火 VS chatgpt (62)-- 算法导论6.5 1题,文心一言vschatgpt,算法,chatgpt

通义千问:

假设我们要求出堆A中的最大值。

1.初始化堆A,将最大值放在根节点上(即数字15)。

2.不断地执行HEAP-EXTRACT-MAX操作,将当前节点的值与其子节点的最大值进行比较。 a) 如果当前节点的值大于其子节点的最大值,则将当前节点的值赋给根节点,并将根节点指向当前节点。 b) 如果当前节点的值小于或等于其子节点的最大值,则继续对其子节点执行HEAP-EXTRACT-MAX操作。

3.当所有节点的值都已经比较完毕后,根节点指向的数字即为堆A中的最大值。

具体操作过程如下:

1.初始状态:A = (15, 13, 9, 5, 12, 8, 7, 4, 0, 6, 2, 1)

2.第一次HEAP-EXTRACT-MAX操作:将15作为当前节点,其子节点为13、9、5、12、8、7、4、0、6、2、1。比较15和13的值,发现15大于13,将15的值赋给根节点15,并将15指向13。此时A = (13, 9, 5, 12, 8, 7, 4, 0, 6, 2, 1)。

3.第二次HEAP-EXTRACT-MAX操作:将13作为当前节点,其子节点为9、5、12、8、7、4、0、6、2、1。比较13和9的值,发现13大于9,将13的值赋给根节点13,并将13指向9。此时A = (9, 5, 12, 8, 7, 4, 0, 6, 2, 1)。

4.第三次HEAP-EXTRACT-MAX操作:将9作为当前节点,其子节点为5、12、8、7、4、0、6、2、1。比较9和5的值,发现9大于5,将9的值赋给根节点9,并将9指向5。此时A = (5, 12, 8, 7, 4, 0, 6, 2, 1)。

5.第四次HEAP-EXTRACT-MAX操作:将5作为当前节点,其子节点为12、8、7、4、0、6、2、1。比较5和12的值,发现5小于12,继续对12进行HEAP-EXTRACT-MAX操作。将12作为当前节点,其子节点为8、7、4、0、6、2、1。比较12和8的值,发现12大于8,将12的值赋给根节点12,并将12指向8。此时A = (8, 7, 4, 0, 6, 2, 1)。

6.第五次HEAP-EXTRACT-MAX操作:将8作为当前节点,其子节点为7、4、0、6、2、1。比较8和7的值,发现8大于7,将8的值赋给根节点8,并将8指向7。此时A = (7, 4, 0, 6, 2, 1)。

7.第六次HEAP-EXTRACT-MAX操作:将7作为当前节点,其子节点为4、0、6、2、1。比较7和4的值,发现7大于4,将7的值赋给根节点7,并将7指向4。此时A = (4, 0, 6, 2, 1)。

8.第七次HEAP-EXTRACT-MAX操作:将4作为当前节点,其子节点为0、6、2、1。比较4和0的值,发现4大于0,将4的值赋给根节点4,并将4指向0。此时A = (6, 2, 1)。

9.第八次HEAP-EXTRACT-MAX操作:将6作为当前节点,其子节点为2、1。比较6和2的值,发现6大于2,将6的值赋给根节点6,并将6指向2。此时A = (2, 1)。

10.第九次HEAP-EXTRACT-MAX操作:将2作为当前节点,其子节点为1。比较2和1的值,发现2大于1,将2的值赋给根节点2,并将2指向1。此时A = (1)。

11.第十次HEAP-EXTRACT-MAX操作:将1作为当前节点,其子节点为空。比较1和空的值,发现1大于空,将1的值赋给根节点1,并将1指向空。此时A = (1)。

至此,所有节点的值都已经比较完毕,根节点指向的数字1即为堆A中的最大值。

文心一言 VS 讯飞星火 VS chatgpt (62)-- 算法导论6.5 1题,文心一言vschatgpt,算法,chatgpt

文心一言 VS 讯飞星火 VS chatgpt (62)-- 算法导论6.5 1题,文心一言vschatgpt,算法,chatgpt

天工:

首先,我们需要将堆A中的元素按照从小到大的顺序排列,得到堆A’=(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)。

然后,我们可以使用HEAP-EXTRACT-MAX算法来找到堆A’中的最大元素。具体步骤如下:

1.从堆A’的根节点开始,依次将堆A’的每个节点的值与堆A’的根节点比较大小。

2.如果堆A’的根节点的值大于当前节点的值,则将当前节点与堆A’的根节点交换位置,并将当前节点的值更新为堆A’的根节点的值。

3.重复步骤1和2,直到堆A’的根节点的值小于等于堆堆A中的最小值。

4.返回堆A中的最大值,即为堆A中的最大元素。

因此,HEAP-EXTRACT-MAX算法的时间复杂度为O(n),其中n为堆A中的元素数量。

文心一言 VS 讯飞星火 VS chatgpt (62)-- 算法导论6.5 1题,文心一言vschatgpt,算法,chatgpt

chatgpt:

HEAP-EXTRACT-MAX操作用于从最大堆中提取出最大的元素,并保持最大堆的性质不变。在给定堆A=(15,13,9,5,12,8,7,4,0,6,2,1)上执行HEAP-EXTRACT-MAX的操作过程如下:

1.由于最大堆的最大元素总是位于堆的根节点,因此从根节点提取出最大元素15。

2.用最后一个元素1替换根节点15,即将1移至根节点的位置。

3.对于新的根节点1,需要恢复最大堆的性质,即将1向下进行调整。首先比较1与它的两个子节点13和9,13较大,因此交换1与13的位置。

4.现在堆的状态为(13,1,9,5,12,8,7,4,0,6,2),接下来再次比较新的根节点1与它的子节点,9较大,因此交换1与9的位置。

5.现在堆的状态为(13,9,1,5,12,8,7,4,0,6,2),再次比较新的根节点1与它的子节点,13较大,因此交换1与13的位置。

6.最终,堆的状态为(13,9,12,5,6,8,7,4,0,1,2)。最大元素15已经从堆中提取出来,同时保持了最大堆的性质。

文心一言 VS 讯飞星火 VS chatgpt (62)-- 算法导论6.5 1题,文心一言vschatgpt,算法,chatgpt文章来源地址https://www.toymoban.com/news/detail-594559.html

到了这里,关于文心一言 VS 讯飞星火 VS chatgpt (62)-- 算法导论6.5 1题的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 文心一言 VS 讯飞星火 VS chatgpt (27)-- 算法导论5.1 2题

    假设我们有一个伪随机数生成器,可以生成在[0,1)范围内的随机数。那么我们可以使用以下算法实现从一个[a, b]范围内的随机数: 1.首先生成一个随机数r,在[0,1)范围内。 2.检查r是否大于a。如果是,则重复步骤1,直到r小于等于a。 3.计算x = (b-a) * r + a。x就是在[a, b]范围内的随

    2024年02月07日
    浏览(39)
  • 文心一言 VS 讯飞星火 VS chatgpt (28)-- 算法导论5.1 3题

    可以使用贝叶斯公式来计算无偏的结果。假设我们进行了n次试验,其中BIASED-RANDOM以概率p输出1,以概率1-p输出0。设N0为输出0的次数,N1为输出1的次数,则有N0+N1=n。根据贝叶斯公式,可以得到: p(N0, N1|p) = p(N0, N1, p) / p(p) 其中,p(N0, N1, p)表示在n次试验中,N0次试验输出0,N1次

    2024年02月07日
    浏览(40)
  • 文心一言 VS 讯飞星火 VS chatgpt (79)-- 算法导论7.4 4题

    首先,为了证明RANDOMIZED-QUICKSORT的期望运行时间是Ω(nlg n),我们需要证明在最坏的情况下,该算法的运行时间是O(nlg n)。然后,我们需要证明在最坏的情况下,算法的期望运行时间是Ω(nlg n)。 RANDOMIZED-QUICKSORT算法是基于快速排序的一种随机化版本,其中在每次递归分割时,随机

    2024年02月12日
    浏览(51)
  • 文心一言 VS 讯飞星火 VS chatgpt (140)-- 算法导论11.4 5题

    在开放寻址法中,一次不成功的查找探查的期望次数可以由装载因子 a 计算。根据定理11.6,这是 1/(1-a)。对于一次成功的查找,其期望探查次数为 1。 我们需要找到一个 a 值,使得一次不成功查找的探查期望数是成功查找的探查期望数的两倍。因此,我们可以设置以下等式:

    2024年02月03日
    浏览(32)
  • 文心一言 VS 讯飞星火 VS chatgpt (60)-- 算法导论6.4 4题

    文心一言 VS 讯飞星火 VS chatgpt (60)-- 算法导论6.4 4题 要证明在最坏情况下,HEAPSORT 的时间复杂度是 Ω(n log n),我们需要考虑在何种情况下堆排序的时间复杂度最低。 在堆排序中,构建最大堆的时间复杂度为 O(n),这是因为在最坏情况下,堆中每个元素都需要与其他元素进行

    2024年02月16日
    浏览(30)
  • 文心一言 VS 讯飞星火 VS chatgpt (33)-- 算法导论5.2 5题

    假设A的元素构成(1, 2, …, n)上的一个均匀随机排列,我们可以使用指示器随机变量来计算其中逆序对的数目期望。 首先,我们定义一个指示器随机变量X(i, j),表示A[i]和A[j]是否构成一个逆序对。如果A[i] A[j],则X(i, j) = 1,否则X(i, j) = 0。 根据题目描述,A的元素构成(1, 2, …,

    2024年02月09日
    浏览(55)
  • 文心一言 VS 讯飞星火 VS chatgpt (32)-- 算法导论5.2 4题

    我们可以将这个问题转化为求解在指示器随机变量基础上的期望值。 已知有n位顾客。 已知服务生以随机顺序将帽子归还给顾客。 根据指示器随机变量的定义,I(i)表示第i位顾客是否拿到了自己的帽子,其值为1表示拿到,0表示未拿到。 因为服务生归还帽子是随机的,所以每

    2024年02月08日
    浏览(51)
  • 文心一言 VS 讯飞星火 VS chatgpt (36)-- 算法导论5.3 6题

    算法 PERMUTE-BY-SORTING 是一种基于排序的随机排列算法,它通过将输入数组中的元素按照优先级排序,然后根据优先级依次将元素插入到输出数组中,从而生成一个均匀随机排列。 对于两个或更多优先级相同的情形,我们可以在排序过程中对具有相同优先级的元素进行随机排序

    2024年02月08日
    浏览(91)
  • 文心一言 VS 讯飞星火 VS chatgpt (123)-- 算法导论10.4 4题

    在计算机科学中,左孩子右兄弟表示法是一种用于表示树状结构的方法,其中每个节点都有两个指针:一个指向其第一个孩子(左孩子),另一个指向其下一个兄弟(右兄弟)。对于一个有根树,我们可以使用一个数组来表示它,其中每个索引对应一个节点,每个节点包含两

    2024年02月08日
    浏览(41)
  • 文心一言 VS 讯飞星火 VS chatgpt (31)-- 算法导论5.2 3题

    为了计算掷n个骰子之和的期望值,我们需要先了解一个重要的概念:指示器随机变量。 指示器随机变量是一种特殊的随机变量,它只有两个取值:0和1。通常用I来表示指示器随机变量,它的取值为1表示事件发生,取值为0表示事件未发生。在掷骰子的例子中,我们可以将指示

    2024年02月09日
    浏览(42)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包