【NLP】多头注意力概念(01)

这篇具有很好参考价值的文章主要介绍了【NLP】多头注意力概念(01)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、说明

        本文是“已实施的变压器”系列的一篇。它从零开始引入了多头注意力机制。注意力是变压器背后的支柱和力量,因为它为序列提供了上下文。

        在变压器模型中,注意力为每个序列提供上下文。这有助于模型了解不同单词如何相互关联,以创建有意义的句子。根据维基百科的描述,“注意力层可以访问所有以前的状态,并根据学习的相关性度量来权衡它们,提供有关遥远令牌的相关信息。

        要了解它是如何工作的,最好对点积有一个很好的理解。有关详细信息,请参阅点积的简单介绍。有关矩阵和张量的更多信息,请参阅张量的简单介绍。

二、何为多头注意力

        根据“注意力就是你所需要的一切”:

注意函数可以描述为将查询和一组键值对映射到输出,其中查询、键、值和输出都是向量。输出计算为值的加权总和,其中文章来源地址https://www.toymoban.com/news/detail-594830.html

到了这里,关于【NLP】多头注意力概念(01)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • haiku实现门控多头注意力模块

    在多头注意力机制中,通常输入的数据包括查询(Q)、键(K)和值(V)。这些数据的维度以及权重矩阵的维度在多头注意力机制中扮演关键角色。下面对数据及权重的维度进行解释: 输入数据(Queries, Keys, Values): Queries (Q): 表示待查询的信息,通常对应输入序列的每个位置

    2024年01月19日
    浏览(42)
  • MultiHeadAttention多头注意力机制的原理

    MultiHeadAttention多头注意力作为Transformer的核心组件,其主要由多组自注意力组合构成。 在NLP任务中,自注意力能够根据上下文词来重新构建目标词的表示,其之所以被称之为注意力,在于从上下文词中去筛选目标词更需要关注的部分,比如\\\"他叫小明\\\",\\\"他\\\"这个词更应该关注

    2023年04月21日
    浏览(44)
  • 深入理解Transformer,兼谈MHSA(多头自注意力)、Cross-Attention(交叉注意力)、LayerNorm、FFN、位置编码

    Transformer其实不是完全的Self-Attention(SA,自注意力)结构,还带有Cross-Attention(CA,交叉注意力)、残差连接、LayerNorm、类似1维卷积的Position-wise Feed-Forward Networks(FFN)、MLP和Positional Encoding(位置编码)等 本文涵盖Transformer所采用的MHSA(多头自注意力)、LayerNorm、FFN、位置编

    2024年04月12日
    浏览(65)
  • multi-head_seft-attention(多头自注意力)

    相比于single-head,multi-head就是将 q i q^i q i 分成了 h h h 份 将 q i q^i q i 分成了 h h h 份 计算过程 对于每个Head,我们可以提取出他的 b 11 b_{11} b 11 ​ 到 b m 1 b_{m1} b m 1 ​ ,以 H e a d 1 Head_1 He a d 1 ​ 举例 将输入序列进行embedding后,变为向量 a 1 a_1 a 1 ​ , a 2 a_2 a 2 ​ , a 3 a_3 a 3 ​

    2024年02月13日
    浏览(46)
  • 深入理解深度学习——注意力机制(Attention Mechanism):带掩码的多头注意力(Masked Multi-head Attention)

    分类目录:《深入理解深度学习》总目录 相关文章: ·注意力机制(AttentionMechanism):基础知识 ·注意力机制(AttentionMechanism):注意力汇聚与Nadaraya-Watson核回归 ·注意力机制(AttentionMechanism):注意力评分函数(AttentionScoringFunction) ·注意力机制(AttentionMechanism):Bahda

    2024年02月09日
    浏览(45)
  • 【人工智能】Transformer 模型数学公式:自注意力机制、多头自注意力、QKV 矩阵计算实例、位置编码、编码器和解码器、常见的激活函数等

    Transformer模型由多个编码器和解码器层组成,其中包含自注意力机制、线性层和层归一化等关键构造模块。虽然无法将整个模型完美地表示为单个数学公式,但我们可以提供一些重要构造模块的数学表示。以下是使用LaTeX格式渲染的部分Transformer关键组件的数学公式: 自注意力

    2024年02月14日
    浏览(56)
  • 翻译: 详细图解Transformer多头自注意力机制 Attention Is All You Need

    The Transformer——一个使用注意力来提高这些模型的训练速度的模型。Transformer 在特定任务中的表现优于谷歌神经机器翻译模型。然而,最大的好处来自于 The Transformer 如何使自己适合并行化。事实上,Google Cloud 建议使用 The Transformer 作为参考模型来使用他们的Cloud TPU产品。所

    2023年04月08日
    浏览(53)
  • 一起学习:大型语言模型(LLM)中的QKV(Query, Key, Value)和多头注意力机制

    每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领域的领跑者。点击订阅,与未

    2024年02月05日
    浏览(46)
  • Python 基于pytorch实现多头自注意力机制代码;Multiheads-Self-Attention代码实现

    多头自注意力机制(Multi-Head Self-Attention)是一种注意力机制的变体,用于增强模型在处理序列数据时的建模能力。它在自注意力机制的基础上引入了多个头(Attention Head),每个头都可以学习到不同的注意力权重分布,从而能够捕捉到不同的关系和特征。 多头自注意力机制可

    2024年04月26日
    浏览(36)
  • 深入理解深度学习——Transformer:解码器(Decoder)的多头注意力层(Multi-headAttention)

    分类目录:《深入理解深度学习》总目录 相关文章: ·注意力机制(Attention Mechanism):基础知识 ·注意力机制(Attention Mechanism):注意力汇聚与Nadaraya-Watson核回归 ·注意力机制(Attention Mechanism):注意力评分函数(Attention Scoring Function) ·注意力机制(Attention Mechanism):

    2024年02月09日
    浏览(41)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包