PCL 改进快速欧式聚类

这篇具有很好参考价值的文章主要介绍了PCL 改进快速欧式聚类。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、概述

  【论文复现】——FEC: Fast Euclidean Clustering for Point Cloud Segmentation一文严格按照论文中描述的方法进行算法的复现,未添加点云聚类分割方法中通用的约束条件阈值。本文对代码中该不足之处进行优化改进。

二、代码实现

FastEuclideanCluster.h文章来源地址https://www.toymoban.com/news/detail-595751.html

#pragma once
#include <pcl/point_types.h>
#include <pcl/point_cloud.h>

到了这里,关于PCL 改进快速欧式聚类的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • PCL 点云组件聚类

    该算法与欧式聚类、DBSCAN聚类很是类似,聚类过程如下所述: 1. 首先,我们需要提供一个种子点集合,对种子点集合进行初始的聚类操作,聚类的评估器(即聚类条件),可以指定为法向评估,也可以是距离评估,以此我们就可以提取出点云中各个位置的组件部分。 2. 合并

    2024年02月10日
    浏览(41)
  • 点云数据做简单的平面的分割 三维场景中有平面,杯子,和其他物体 实现欧式聚类提取 对三维点云组成的场景进行分割

    点云分割是根据空间,几何和纹理等特征对点云进行划分,使得同一划分内的点云拥有相似的特征,点云的有效分割往往是许多应用的前提,例如逆向工作,CAD领域对零件的不同扫描表面进行分割,然后才能更好的进行空洞修复曲面重建,特征描述和提取,进而进行基于3D内

    2024年02月10日
    浏览(47)
  • PCL - 3D点云配准(registration)介绍

    前面多篇博客都提到过,要善于从官网去熟悉一样东西。API部分详细介绍见 Point Cloud Library (PCL): Module registration 这里博主主要借鉴Tutorial里内容(博主整体都有看完) Introduction — Point Cloud Library 0.0 documentation 接下来主要跑下Registration中的sample例子 一.直接运行下How to use iter

    2024年02月12日
    浏览(49)
  • 3D点云处理:Opencv Pcl实现深度图转点云(附源码)

    订阅说明:如果要订阅,先看链接内容 看链接内容 看链接内容:订阅先看此内容 文章目录: 3D视觉个人学习目录 处理结果 文章中提供的深度图像,深度图像一般以.tiff和.png保存,可以通过Opencv中的

    2024年02月09日
    浏览(38)
  • PCL 快速计算点云的法向量

      PCL中计算点云法向量的方法采用的是Eigen库中的矩阵分解法,在阅读Open3D源码时发现Open3D集成了一种快速计算法向量的方法,该方法采用的文献A robust algorithm for finding the eigenvalues and eigenvectors of 3 × 3 symmetric matrices中提到的数值优化算法。   仔细研究该论文会发现其计

    2024年02月07日
    浏览(39)
  • PCL点云处理之最小二乘空间直线拟合(3D) (二百零二)

    对于空间中的这样一组点:大致呈直线分布,散乱分布在直线左右, 我们可采用最小二乘方法拟合直线,更进一步地,可以通过点到直线的投影,最终得到一组严格呈直线分布的点,同时,这个结果也可以验证最小二乘拟合得到的直线参数是否正确,使用下面的代码可以得到

    2024年02月12日
    浏览(42)
  • 点云分割-pcl区域生长算法

    1、本文内容 pcl的区域生长算法的使用和原理 2、平台/环境 cmake, pcl 3、转载请注明出处: https://blog.csdn.net/qq_41102371/article/details/131927376 参考:https://pcl.readthedocs.io/projects/tutorials/en/master/region_growing_segmentation.html#region-growing-segmentation https://blog.csdn.net/taifyang/article/details/124097186

    2024年02月15日
    浏览(38)
  • open3d,python-pcl,numpy 点云数据格式转换

    NumPy 转 open3d.PointCloud 参考: https://www.codenong.com/cs106756630/ numpy转open3D需要借助Vector3dVector函数,这样可以直接赋值与open3d.PointCloud.points,具体操作如下,假设(x, y, z)、(n_x, n_y, n_z)、(r, g, b)分别是一个n*3numpy数组(这三者不一定全部需要),则对于点数,法向量和颜色的转换都可以借

    2024年02月10日
    浏览(37)
  • PCL 使用LCCP算法进行点云分割

      LCCP是Locally Convex Connected Patches的缩写,算法大致可以分成两个部分: 基于超体聚类的过分割。 在超体聚类的基础上再聚类。 /

    2024年02月12日
    浏览(47)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包