核密度估计(二维、三维)

这篇具有很好参考价值的文章主要介绍了核密度估计(二维、三维)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

核密度估计是通过平滑的峰值函数来拟合样本数据,利用连续的密度曲线描述随机变量的分布形态,具有稳健性强、模型依赖性弱的特性。现在已经被广泛的应用到动态演进分析当中,核密度估计通常有二维、三维表现形式,如下图:

二维核密度估计,核密度估计,概率论,matlab

二维核密度估计,核密度估计,概率论,matlab

(上述图片分别取自于陈明华, 刘文斐, 王山, 等. 长江经济带城市生态效率的空间格局及演进趋势[J]. 资源科学, 2020, 42(6): 1087-1098.马玉林,马运鹏.中国科技资源配置效率的区域差异及收敛性研究[J].数量经济技术经济研究,2021,38(08):83-103.)

本人在写作过程中应用到该种方法,需要做实证分析的同学可以留言。文章来源地址https://www.toymoban.com/news/detail-595852.html

到了这里,关于核密度估计(二维、三维)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【概率论与数理统计】猴博士 笔记 p24-25 条件概率密度函数、求两个随机变量形成的函数的分布

    题型如下: 已知概率密度,求条件概率密度 已知x怎么样的情况下y服从的概率(或y怎么样的情况下x服从的概率),求f(x,y) 步骤:对于后两个,是在哪个字母的条件下,哪个字母就在后面。 即,如果是在x=???的条件下,那么就选图中第三条方法。 其中: 1、2条符合条件

    2024年02月03日
    浏览(48)
  • 【基础知识-概率论】似然、似然函数、极大似然估计(最大似然估计)

    在已知一些参数的情况下,预测接下来结果的可能性 在 结果产生之前 ,通过环境中的参数,预测事件发生的概率 例:抛硬币 假定硬币的材质均匀,其抛出落地结果为正面和反面的概率都是0.5 这个概率在结果发生前才有意义,在发生后,抛硬币的结果就确定了 跟概率相反,

    2024年01月23日
    浏览(42)
  • 【考研数学】概率论与数理统计 —— 第七章 | 参数估计(1,基本概念及点估计法)

    我们之前学了那么多分布,如正态分布 N ( μ , σ 2 ) N(mu,sigma^2) N ( μ , σ 2 ) ,泊松分布 P ( λ ) P(lambda) P ( λ ) 等等,都是在已知 μ , σ , λ mu,sigma,lambda μ , σ , λ 的情况下。那这些值是怎么来的呢?参数估计便可以帮助我们回答这一问题。 所谓参数估计,即总体 X X X 的分布

    2024年02月08日
    浏览(34)
  • 概率论与数理统计:第七章:参数估计 第八章:假设检验

    1.矩估计 p i ( θ ) p_i(θ) p i ​ ( θ ) 、 f ( x i , θ ) f(x_i,θ) f ( x i ​ , θ ) ,用矩估计法来估计未知参数θ { X ˉ = E ( X ) 1 n ∑ i = 1 n X i 2 = E ( X 2 ) left{begin{aligned} bar{X} = E(X) \\\\ dfrac{1}{n}sumlimits_{i=1}^nX_i^2 = E(X^2) end{aligned}right. ⎩ ⎨ ⎧ ​ X ˉ = n 1 ​ i = 1 ∑ n ​ X i 2 ​ = ​ E

    2024年02月11日
    浏览(45)
  • 【小呆的概率论学习笔记】抽样调查之用抽样样本估计母体数字特征

    1. 随机变量的数字特征 随机变量本质上是一个随机数,他以概率的形式取任何可能的取值,但是随机变量取值却有一定的规律,我们可以称之为随机变量的数字特征。最简明、最常用的随机变量的数字特征就是均值(或者说期望)和方差。 1.1 随机变量的均值(期望) 随机变

    2024年02月01日
    浏览(91)
  • 核密度估计(二维、三维)

    核密度估计是通过平滑的峰值函数来拟合样本数据,利用连续的密度曲线描述随机变量的分布形态,具有稳健性强、模型依赖性弱的特性。现在已经被广泛的应用到动态演进分析当中,核密度估计通常有二维、三维表现形式,如下图: (上述图片分别取自于陈明华, 刘文斐

    2024年02月16日
    浏览(32)
  • 【考研数学】概率论与数理统计 —— 第七章 | 参数估计(2,参数估计量的评价、正态总体的区间估计)

    设 X X X 为总体, ( X 1 , X 2 , ⋯   , X n ) (X_1,X_2,cdots ,X_n) ( X 1 ​ , X 2 ​ , ⋯ , X n ​ ) 为来自总体 X X X 的简单随机样本, θ theta θ 为未知参数,设 θ ^ = φ ( X 1 , X 2 , ⋯   , X n ) widehat{theta}=varphi(X_1,X_2,cdots,X_n) θ = φ ( X 1 ​ , X 2 ​ , ⋯ , X n ​ ) 为参数 θ theta θ 的一个点估

    2024年02月06日
    浏览(45)
  • 宋浩概率论笔记(三)随机向量/二维随机变量

    第三更:本章的内容最重要的在于概念的理解与抽象,二重积分通常情况下不会考得很难。此外,本次暂且忽略【二维连续型随机变量函数的分布】这一章节,非常抽象且难度较高,之后有时间再更新。 目录 1.1二维随机变量及其分布函数 1.2二维离散型随机变量的联合分布与

    2024年02月14日
    浏览(40)
  • 《概率论与数理统计》学习笔记3-二维随机变量及其分布

    目录 二维随机变量及其分布函数 二维离散型随机变量及其概率分布 连续型随机变量及其概率密度 条件分布 二维随机变量的函数分布         二维随机变量的定义:                 X和Y是定义在随机试验E的 样本空间Ω 上的 两个随机变量 ,他们 构成的向量 (𝑋

    2024年02月07日
    浏览(49)
  • 【考研数学】概率论与数理统计 —— 第三章 | 二维随机变量及其分布(3,二维随机变量函数的分布)

    设 ( X , Y ) (X,Y) ( X , Y ) 为二维随机变量,以 X , Y X,Y X , Y 为变量所构成的二元函数 Z = φ ( X , Y ) Z=varphi(X,Y) Z = φ ( X , Y ) ,称为随机变量 ( X , Y ) (X,Y) ( X , Y ) 的函数,其分布一般有如下几种情形: ( X , Y ) (X,Y) ( X , Y ) 为二维离散型随机变量 设 ( X , Y ) (X,Y) ( X , Y ) 联合分布律为

    2024年02月07日
    浏览(39)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包