kafka无消息丢失配置

这篇具有很好参考价值的文章主要介绍了kafka无消息丢失配置。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

前言:

 消息丢失的场景

 生产者消息丢失

Broker消息丢失 

消费者消息丢失 

 消息丢失问题排查

无消息丢失配置:

参考资料:


前言:

      使用消息中间件时,我们遇到最头疼的事就消息丢失,小则影响程序错误,大则影响到某个重要业务失败。如果kafka配置不当或者使用不当,是很有可能出现消息丢失的。本篇博文重点探讨主要的kafka消息丢失的场景及我们应该如何配置kafka参数来避免消息的丢失。

 消息丢失的场景

      消息丢失无非分为3种,生产端消息丢失、kafka-broker端消息丢失、服务端消息丢失。

Kafka对于消息丢失这件事,只做了如下承诺,kafka只对已提交的消息做有限度的持久化保证。

 生产者消息丢失

      那生产者丢失,大多数就是因为,生产者不确定消息是否已经提交成功。如果使用不带

回调通知的send方法的话producer.send(msg),就无法保证消息被成功。所以我们应该使用带回调函数的send方法producer.send(msg,callback),这样我们就可以监听消息的发送情况,然后做有效的重试,确保消息都发送成功。

Broker消息丢失 

   对于kafka服务器端消息丢失,相对来说概率是比较小的,kafka作为一个成熟的中间件,经受业界的认可,但是需要注意,消息在borker中是由存在时长的,超过这个时间,默认会删除这些消息,另外对于分区的副本数也要进行合理设计,避免因为某一台机器的硬盘别破坏掉后,导致消息丢失。

消费者消息丢失 

     消费者消费丢失,大多数的场景为位移提交出现了问题,比如在消费者异步多线程消费消息,其中有个处理失败,位移提交失败,就会导致这个线程处理的消息丢失。  

 消息丢失问题排查

    对于消息丢失的问题,首先,我们应该建立完整的日志,在消息发送前和发送后 、消费前后分别计日志, 建立告警机制。

无消息丢失配置:

  1. 不要使用producer.send(msg),而要使用producer.send(msg, callback)。记住,一定要使用带有回调通知的send方法。
  2. 设置acks = all。acks是Producer的一个参数,代表了你对“已提交”消息的定义。如果设置成all,则表明所有副本Broker都要接收到消息,该消息才算是“已提交”。这是最高等级的“已提交”定义。
  3. 设置retries为一个较大的值。这里的retries同样是Producer的参数,对应前面提到的Producer自动重试。当出现网络的瞬时抖动时,消息发送可能会失败,此时配置了retries > 0的Producer能够自动重试消息发送,避免消息丢失。
  4. 设置unclean.leader.election.enable = false。这是Broker端的参数,它控制的是哪些Broker有资格竞选分区的Leader。如果一个Broker落后原先的Leader太多,那么它一旦成为新的Leader,必然会造成消息的丢失。故一般都要将该参数设置成false,即不允许这种情况的发生。
  5. 设置replication.factor >= 3。这也是Broker端的参数。其实这里想表述的是,最好将消息多保存几份,毕竟目前防止消息丢失的主要机制就是冗余。
  6. 设置min.insync.replicas > 1。这依然是Broker端参数,控制的是消息至少要被写入到多少个副本才算是“已提交”。设置成大于1可以提升消息持久性。在实际环境中千万不要使用默认值1。
  7. 确保replication.factor > min.insync.replicas。如果两者相等,那么只要有一个副本挂机,整个分区就无法正常工作了。我们不仅要改善消息的持久性,防止数据丢失,还要在不降低可用性的基础上完成。推荐设置成replication.factor = min.insync.replicas + 1。
  8. 确保消息消费完成再提交。Consumer端有个参数enable.auto.commit,最好把它设置成false,并采用手动提交位移的方式。就像前面说的,这对于单Consumer多线程处理的场景而言是至关重要的。

参考资料:

 极客时间课程《kafka核心技术与实战》第11课

无消息丢失配置如何实现?文章来源地址https://www.toymoban.com/news/detail-595875.html

到了这里,关于kafka无消息丢失配置的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 分布式 - 消息队列Kafka:Kafka生产者发送消息的分区策略

    01. Kafka 分区的作用 分区的作用就是提供负载均衡的能力,或者说对数据进行分区的主要原因,就是为了实现系统的高伸缩性。不同的分区能够被放置到不同节点的机器上,而数据的读写操作也都是针对分区这个粒度而进行的,这样每个节点的机器都能独立地执行各自分区的

    2024年02月13日
    浏览(50)
  • 分布式 - 消息队列Kafka:Kafka生产者发送消息的3种方式

    不管是把Kafka作为消息队列、消息总线还是数据存储平台,总是需要一个可以往Kafka写入数据的生产者、一个可以从Kafka读取数据的消费者,或者一个兼具两种角色的应用程序。 Kafka 生产者是指使用 Apache Kafka 消息系统的应用程序,它们负责将消息发送到 Kafka 集群中的一个或多

    2024年02月13日
    浏览(45)
  • 分布式消息队列Kafka(四)- 消费者

    1.Kafka消费方式 2.Kafka消费者工作流程 (1)总体工作流程 (2)消费者组工作流程 3.消费者API (1)单个消费者消费 实现代码 (2)单个消费者指定分区消费 代码实现: (3)消费者组消费 复制上面CustomConsumer三个,同时去订阅统一个主题,消费数据,发现一个分区只能被一个

    2023年04月26日
    浏览(44)
  • 【新星计划】Kafka分布式发布订阅消息系统

      目录 Kafka分布式发布订阅消息系统 1. 概述 1.1 点对点消息传递模式 1.2 发布-订阅消息传递模式 1.3 Kafka特点 1.4 kafka拓扑图 2. Kafka工作原理 2.1 Kafka核心组件介绍 2.2 Kafka工作流程分析 2.2.1 生产者生产消息过程 2.2.2 消费者消费消息过程 2.2.3 Kafka Topics 2.2.4 Kafka Partition 2.2.4 Kafka

    2024年02月08日
    浏览(44)
  • 分布式 - 消息队列Kafka:Kafka 消费者的消费位移

    01. Kafka 分区位移 对于Kafka中的分区而言,它的每条消息都有唯一的offset,用来表示消息在分区中对应的位置。偏移量从0开始,每个新消息的偏移量比前一个消息的偏移量大1。 每条消息在分区中的位置信息由一个叫位移(Offset)的数据来表征。分区位移总是从 0 开始,假设一

    2024年02月12日
    浏览(46)
  • zookeeper+kafka分布式消息队列集群的部署

    目录 一、zookeeper 1.Zookeeper 定义 2.Zookeeper 工作机制 3.Zookeeper 特点 4.Zookeeper 数据结构 5.Zookeeper 应用场景 (1)统一命名服务 (2)统一配置管理 (3)统一集群管理 (4)服务器动态上下线 6.Zookeeper 选举机制 (1)第一次启动选举机制 (2)非第一次启动选举机制 7.部署zookeepe

    2024年02月14日
    浏览(47)
  • 分布式应用之zookeeper集群+消息队列Kafka

           ZooKeeper是一个分布式的,开放源码的分布式应用程序协调服务,是Google的Chubby一个开源的实现,是Hadoop和Hbase的重要组件。它是一个为分布式应用提供一致性服务的软件,提供的功能包括:配置维护、域名服务、分布式同步、组服务等。为分布式框架提供协调服务的

    2024年02月06日
    浏览(60)
  • 分布式 - 消息队列Kafka:Kafka消费者的分区分配策略

    Kafka 消费者负载均衡策略? Kafka 消费者分区分配策略? 1. 环境准备 创建主题 test 有5个分区,准备 3 个消费者并进行消费,观察消费分配情况。然后再停止其中一个消费者,再次观察消费分配情况。 ① 创建主题 test,该主题有5个分区,2个副本: ② 创建3个消费者CustomConsu

    2024年02月13日
    浏览(42)
  • 分布式 - 消息队列Kafka:Kafka消费者分区再均衡(Rebalance)

    01. Kafka 消费者分区再均衡是什么? 消费者群组里的消费者共享主题分区的所有权。当一个新消费者加入群组时,它将开始读取一部分原本由其他消费者读取的消息。当一个消费者被关闭或发生崩溃时,它将离开群组,原本由它读取的分区将由群组里的其他消费者读取。 分区

    2024年02月12日
    浏览(37)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包