Python应用实例(二)数据可视化(五)

这篇具有很好参考价值的文章主要介绍了Python应用实例(二)数据可视化(五)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

下载一个数据集,其中记录了一个月内全球发生的所有地震,再制作一幅散点图来展示这些地震的位置和震级。这些数据是以JSON格式存储的,因此要使用模块json来处理。Plotly提供了根据位置数据绘制地图的工具,适合初学者使用。你将使用它来进行可视化并指出全球的地震分布情况。

1.地震数据

请将文件eq_data_1_day_m1.json复制到存储本章程序的文件夹中。地震是以里氏震级度量的,而该文件记录了(截至写作本节时)最近24小时内全球发生的所有不低于1级的地震。

Python应用实例(二)数据可视化(五),python,信息可视化,python,数据分析

2.查看JSON数据

如果打开文件eq_data_1_day_m1.json,你将发现其内容密密麻麻,难以阅读:

{"type":"FeatureCollection","metadata":{"generated":1550361461000,...
{"type":"Feature","properties":{"mag":1.2,"place":"11km NNE of Nor...
{"type":"Feature","properties":{"mag":4.3,"place":"69km NNW of Ayn...
{"type":"Feature","properties":{"mag":3.6,"place":"126km SSE of Co...
{"type":"Feature","properties":{"mag":2.1,"place":"21km NNW of Teh...
{"type":"Feature","properties":{"mag":4,"place":"57km SSW of Kakto...
--snip--

这些数据适合机器而不是人来读取。不过可以看到,这个文件包含一些字典,还有一些我们感兴趣的信息,如震级和位置。

模块json提供了各种探索和处理JSON数据的工具,其中一些有助于重新设置这个文件的格式,让我们能够更清楚地查看原始数据,继而决定如何以编程的方式来处理。

我们先加载这些数据并将其以易于阅读的方式显示出来。这个数据文件很长,因此不打印出来,而是将数据写入另一个文件,再打开该文件并轻松地在数据中导航:eq_explore_data.py

  import json

  # 探索数据的结构。
  filename = 'data/eq_data_1_day_m1.json'
  with open(filename) as f:
❶     all_eq_data = json.load(f)

❷ readable_file = 'data/readable_eq_data.json'
  with open(readable_file, 'w') as f:
❸     json.dump(all_eq_data, f, indent=4)

首先导入模块json,以便恰当地加载文件中的数据,并将其存储到all_eq_data中(见❶)。函数json.load()将数据转换为Python能够处理的格式,这里是一个庞大的字典。在❷处,创建一个文件,以便将这些数据以易于阅读的方式写入其中。函数json.dump()接受一个JSON数据对象和一个文件对象,并将数据写入这个文件中(见❸)。参数indent=4让dump()使用与数据结构匹配的缩进量来设置数据的格式。

如果你现在查看目录data并打开其中的文件readable_eq_data.json,将发现其开头部分像下面这样:readable_eq_data.json

  {
      "type": "FeatureCollection","metadata": {
          "generated": 1550361461000,
          "url": "https://earthquake.usgs.gov/earthquakes/.../1.0_day.geojson",
          "title": "USGS Magnitude 1.0+ Earthquakes, Past Day",
          "status": 200,
          "api": "1.7.0",
          "count": 158
      },"features": [
      --snip--

这个文件的开头是一个键为"metadata"的片段(见❶),指出了这个数据文件是什么时候生成的,以及能够在网上的什么地方找到。它还包含适合人类阅读的标题以及文件中记录了多少次地震:在过去的24小时内,发生了158次地震。

这个geoJSON文件的结构适合存储基于位置的数据。数据存储在一个与键"features"相关联的列表中(见❷)。这个文件包含的是地震数据,因此列表的每个元素都对应一次地震。这种结构可能有点令人迷惑,但很有用,让地质学家能够将有关每次地震的任意数量信息存储在一个字典中,再将这些字典放在一个大型列表中。

我们来看看表示特定地震的字典:readable_eq_data.json

  --snip--
      {
          "type": "Feature","properties": {
              "mag": 0.96,
              --snip--"title": "M 1.0 - 8km NE of Aguanga, CA"
           },"geometry": {
               "type": "Point",
               "coordinates": [-116.7941667,33.4863333,
                  3.22
               ]
          },
          "id": "ci37532978"
      },

键"properties"关联到了与特定地震相关的大量信息(见❶)。我们关心的主要是与键"mag"相关联的地震震级以及地震的标题,因为后者很好地概述了地震的震级和位置(见❷)。

键"geometry"指出了地震发生在什么地方(见❸),我们需要根据这项信息将地震在散点图上标出来。在与键"coordinates"相关联的列表中,可找到地震发生位置的经度(见❹)和纬度(见❺)。

这个文件的嵌套层级比我们编写的代码多。如果这让你感到迷惑,也不用担心,Python将替你处理大部分复杂的工作。我们每次只会处理一两个嵌套层级。我们将首先提取过去24小时内发生的每次地震对应的字典。

注意 说到位置时,我们通常先说纬度、再说经度,这种习惯形成的原因可能是人类先发现了纬度,很久后才有经度的概念。然而,很多地质学框架都先列出经度、后列出纬度,因为这与数学约定[插图]一致。geoJSON格式遵循(经度, 纬度)的约定,但在使用其他框架时,获悉其遵循的约定很重要。

3.创建地震列表

首先,创建一个列表,其中包含所有地震的各种信息:eq_explore_data.py

import json
# 探索数据的结构。
filename = 'data/eq_data_1_day_m1.json'
with open(filename) as f:
    all_eq_data = json.load(f)

all_eq_dicts = all_eq_data['features']
print(len(all_eq_dicts))

我们提取与键’features’相关联的数据,并将其存储到all_eq_dicts中。我们知道,这个文件记录了158次地震。下面的输出表明,我们提取了这个文件记录的所有地震:

158

注意,我们编写的代码很短。格式良好的文件readable_eq_data.json包含超过6000行内容,但只需几行代码,就可读取所有的数据并将其存储到一个Python列表中。下面将提取所有地震的震级。

4.提取震级

有了包含所有地震数据的列表后,就可遍历这个列表,从中提取所需的数据。下面来提取每次地震的震级:eq_explore_data.py

  --snip--
  all_eq_dicts = all_eq_data['features']

❶ mags = []
  for eq_dict in all_eq_dicts:
❷     mag = eq_dict['properties']['mag']
      mags.append(mag)

  print(mags[:10])

我们创建了一个空列表,用于存储地震震级,再遍历列表all_eq_dicts(见❶)。每次地震的震级都存储在相应字典的’properties’部分的’mag’键下(见❷)。我们依次将地震震级赋给变量mag,再将这个变量附加到列表mags末尾。

为确定提取的数据是否正确,打印前10次地震的震级:

[0.96, 1.2, 4.3, 3.6, 2.1, 4, 1.06, 2.3, 4.9, 1.8]

接下来,我们将提取每次地震的位置信息,然后就可以绘制地震散点图了。

5.提取位置数据

位置数据存储在"geometry"键下。在"geometry"键关联的字典中,有一个"coordinates"键,它关联到一个列表,而列表中的前两个值为经度和纬度。下面演示了如何提取位置数据:eq_explore_data.py

  --snip--
  all_eq_dicts = all_eq_data['features']

  mags, titles, lons, lats = [], [], [], []
  for eq_dict in all_eq_dicts:
      mag = eq_dict['properties']['mag']
❶     title = eq_dict['properties']['title']
❷     lon = eq_dict['geometry']['coordinates'][0]
      lat = eq_dict['geometry']['coordinates'][1]
      mags.append(mag)
      titles.append(title)
      lons.append(lon)
      lats.append(lat)

  print(mags[:10])
  print(titles[:2])
  print(lons[:5])
  print(lats[:5])

我们创建了用于存储位置标题的列表titles,来提取字典’properties’里’title’键对应的值(见❶),以及用于存储经度和纬度的列表。代码eq_dict[‘geometry’]访问与"geometry"键相关联的字典(见❷)。第二个键(‘coordinates’)提取与"coordinates"相关联的列表,而索引0提取该列表中的第一个值,即地震发生位置的经度。

打印前5个经度和纬度时,输出表明提取的数据是正确的:

[0.96, 1.2, 4.3, 3.6, 2.1, 4, 1.06, 2.3, 4.9, 1.8]
['M 1.0 - 8km NE of Aguanga, CA', 'M 1.2 - 11km NNE of North Nenana, Alaska']
[-116.7941667, -148.9865, -74.2343, -161.6801, -118.5316667]
[33.4863333, 64.6673, -12.1025, 54.2232, 35.3098333]

6.绘制震级散点图

有了前面提取的数据,就可以绘制可视化图了。首先要实现一个简单的震级散点图,在确保显示的信息正确无误之后,我们再将注意力转向样式和外观方面。绘制初始散点图的代码如下:eq_world_map.py

import plotly.express as px

  fig = px.scatter(
      x=lons,
      y=lats,
      labels={"x": "经度", "y": "纬度"},
      range_x=[-200, 200],
      range_y=[-90, 90],
      width=800,
      height=800,
      title="全球地震散点图",)
❸ fig.write_html("global_earthquakes.html")
❹ fig.show()

首先,导入plotly.express,用别名px表示。Plotly Express是Plotly的高级接口,简单易用,语法与Matplotlib类似(见❶)。然后,调用px.scatter函数配置参数创建一个fig实例,分别设置[插图]轴为经度[范围是[-200, 200](扩大空间,以便完整显示东西经180°附近的地震散点)]、[插图]轴为纬度[范围是[-90,90]],设置散点图显示的宽度和高度均为800像素,并设置标题为“全球地震散点图”(见❷)。

只用14行代码,简单的散点图就配置完成了,这返回了一个fig对象。fig.write_html方法可以将可视化图保存为html文件。在文件夹中找到global_earthquakes.html文件,用浏览器打开即可(见❸)。另外,如果使用Jupyter Notebook,可以直接使用fig.show方法直接在notebook单元格显示散点图(见❹)。

局部效果如下图所示:

Python应用实例(二)数据可视化(五),python,信息可视化,python,数据分析

可对这幅散点图做大量修改,使其更有意义、更好懂。下面就来做些这样的修改。

7.另一种指定图表数据的方式

配置这个图表前,先来看看另一种稍微不同的指定Plotly 图表数据的方式。当前,经纬度数据是手动配置的:

--snip--
    x=lons,
    y=lats,
    labels={"x": "经度", "y": "纬度"},
--snip--

这是在Plotly Express中给图表定义数据的最简单方式之一,但在数据处理中并不是最佳的。下面是另一种给图表定义数据的等效方式,需要使用pandas数据分析工具。首先创建一个DataFrame,将需要的数据封装起来:

import pandas as pd

data = pd.DataFrame(
    data=zip(lons, lats, titles, mags), columns=["经度", "纬度", "位置", "震级"]
)
data.head()

然后,参数配置方式可以变更为:

--snip--
    data,
    x="经度",
    y="纬度",
--snip--

在这种方式中,所有有关数据的信息都以键值对的形式放在一个字典中。如果在eq_plot.py中使用这些代码,生成的图表是一样的。相比于前一种格式,这种格式让我们能够无缝衔接数据分析,并且更轻松地进行定制。文章来源地址https://www.toymoban.com/news/detail-596882.html

到了这里,关于Python应用实例(二)数据可视化(五)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • python如何实现点云可视化交互——Open3D实例教程(获取所选点的信息)保姆级教学

    Open3D是目前python中可用的用于 3D 数据处理的现代库,可以对点云、网格等三维数据进行读取、采样、配准、可视化等操作。其中对点云等三维模型进行可视化的功能在Python中显得非常方便。 在通过对官方文档的研究之后作者发现在Open3D的多种可视化函数中出现了返回所选点

    2024年02月02日
    浏览(61)
  • Python招聘信息爬虫数据可视化分析大屏全屏系统

     博主介绍 :黄菊华老师《Vue.js入门与商城开发实战》《微信小程序商城开发》图书作者,CSDN博客专家,在线教育专家,CSDN钻石讲师;专注大学生毕业设计教育和辅导。 所有项目都配有从入门到精通的基础知识视频课程,学习后应对毕业设计答辩。 项目配有对应开发文档、

    2024年04月09日
    浏览(60)
  • Python采集二手房源数据信息并做可视化展示

    前言 嗨喽~大家好呀,这里是魔王呐 ❤ ~! 环境使用: Python 3.8 jupyter -- pip install jupyter notebook pycharm 也可以 模块使用: requests pip install requests 数据请求模块 parsel pip install parsel 数据解析模块 csv 内置模块 第三方模块安装: win + R 输入 cmd 点击确定, 输入安装命令 pip install 模块名

    2024年02月10日
    浏览(39)
  • 【Python爬虫+数据分析】采集电商平台数据信息,并做可视化演示

    随着电商平台的兴起,越来越多的人开始在网上购物。而对于电商平台来说,商品信息、价格、评论等数据是非常重要的。因此,抓取电商平台的商品信息、价格、评论等数据成为了一项非常有价值的工作。本文将介绍如何使用Python编写爬虫程序,抓取电商平台的商品信息、

    2024年02月08日
    浏览(54)
  • 微博数据可视化分析:利用Python构建信息图表展示话题热度

    1. 引言 随着社交媒体的迅速发展,微博已成为人们交流观点、表达情感的重要平台之一。微博评论数据蕴含着丰富的信息,通过对这些数据进行分析和可视化,我们可以深入了解用户对特定话题的关注程度和情感倾向。本文将介绍如何利用Python进行微博评论数据的准备、探索

    2024年02月20日
    浏览(54)
  • 利用Python进行数据可视化Plotly与Dash的应用【第157篇—数据可视化】

    前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。【点击进入巨牛的人工智能学习网站】。 数据可视化是数据分析中至关重要的一环,它能够帮助我们更直观地理解数据并发现隐藏的模式和趋势。在Python中,有许多强大的工具可以用

    2024年04月14日
    浏览(68)
  • 对利用Python爬取到的房价信息做数据可视化(附完整代码)

          大家好,我是带我去滑雪,每天教你一个小技巧! 本文利用Python爬取到的房价信息做数据可视化,爬取数据的文章见: (利用Python爬取房价信息(附代码)_用python爬取房价数据_带我去滑雪的博客-CSDN博客)       所爬取的指标有小区名称、房屋位置、房屋户型、房屋面

    2024年02月02日
    浏览(43)
  • 【Python爬虫+数据分析】采集电商平台数据信息,并做可视化演示(带视频案例)

    随着电商平台的兴起,越来越多的人开始在网上购物。而对于电商平台来说,商品信息、价格、评论等数据是非常重要的。因此,抓取电商平台的商品信息、价格、评论等数据成为了一项非常有价值的工作。 接下来就让我来教你 如何使用Python编写爬虫程序,抓取电商平台的

    2024年02月11日
    浏览(60)
  • 信息管理毕设分享(含算法) python大数据房价预测与可视化系统

    # 0 简介 今天学长向大家介绍一个适合作为毕设的项目 毕设分享 python大数据房价预测与可视化系统 项目获取: https://gitee.com/sinonfin/algorithm-sharing 1.需求描述 对于数据挖掘工程师来说,有时候需要抓取地理位置信息,比如统计房子周边基础设施信息,比如医院、公交车站、写

    2024年02月03日
    浏览(42)
  • 实例:【基于机器学习的NBA球员信息数据分析与可视化】

    数据集共有342个NBA球员样本,包含38个特征,即342行×38列。对这些数据进行集成和预处理。 利用python语言,设计合适的机器学习算法。找出球员在场时对球队比赛获胜的贡献大小,最能反映球员的综合实力的特征。 算法过程及结果的设计合适的可视化图像,将所设计的算法

    2024年02月08日
    浏览(49)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包