STM32 HAL库定时器输入捕获SlaveMode脉宽测量

这篇具有很好参考价值的文章主要介绍了STM32 HAL库定时器输入捕获SlaveMode脉宽测量。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

STM32 HAL库定时器输入捕获SlaveMode脉宽测量


📓SlaveMode模式简介

✨SlaveMode复位模式:在发生一个触发输入事件时,计数器和它的预分频器能够重新被初始化;同时,如果TIMx_CR1寄存器的URS位为低,还会产生一个更新事件UEV;然后所有的预装载寄存器(TIMx_ARR, TIMx_CCRx)都会被更新。

STM32 HAL库定时器输入捕获SlaveMode脉宽测量,STM32CubeMX自动配置工程系列,stm32,脉宽测量,输入捕获

STM32 HAL库定时器输入捕获SlaveMode脉宽测量,STM32CubeMX自动配置工程系列,stm32,脉宽测量,输入捕获

  • 🔖当所测频率低于最小定时器捕获频率时,需要使能自动重装载和定时器溢出中断。
SlaveMode模式下当输入捕获引脚接收到脉冲的上降沿信号时,产生复位并从零开始重新计数。

STM32 HAL库定时器输入捕获SlaveMode脉宽测量,STM32CubeMX自动配置工程系列,stm32,脉宽测量,输入捕获

  • 🎋一个周期内的总计数:输入捕获上(下)升沿信号开始,到下一个上(下)升沿结束总计数个数: C N T = N ∗ ( A R R + 1 ) + C R R 1 CNT=N*(ARR+1)+CRR1 CNT=N(ARR+1)+CRR1
    • N:定时器溢出次数
    • ARR:TIMx预装载值
    • TIMx->CRR1寄存器计数值
  • 🌴定时器计数频率: f = F o s c / ( p s c + 1 ) f =Fosc/(psc+1) f=Fosc/(psc+1)
    • Fosc:定时器的频率(主时钟频率)
    • psc:分频系数
  • 📐计一个数时间: T = 1 ÷ f T = 1 \div f T=1÷f = 1 f \frac{1}f f1
  • 📏CNT总计数时间: C N T × T CNT \times T CNT×T
  • 📏脉宽宽度等于上升沿开始到下一个下降沿之间的计数值: C C R 2 ∗ 1 f CCR2*\frac{1}f CCR2f1

📑PWM主要参数

  • 🌿频率:是指1秒钟内信号从高电平到低电平再回到高电平的次数(一个周期);
  • 🌿占空比:一个脉冲周期内,高电平的时间与整个周期时间的比例。

🛠输入捕获SlaveMode脉宽测量

  • 🌿输入捕获到的PWM信号频率: 1 / C N T ∗ T = 1 / C N T ∗ ( 1 / f ) = f / C N T 1/CNT*T = 1/CNT*(1/f) = f/CNT 1/CNTT=1/CNT(1/f)=f/CNT
  • 🌿PWM占空比: C R R 2 ÷ C N T CRR2 \div CNT CRR2÷CNT

📐最小捕获频率计算

  • 🎋定时器频率: f / p s c f/psc f/psc
  • 🖍如果STM32以72MHz主频,定时器分频系数为36,定时器的时钟频率为2MHz。

PSC定时器TIMx->PSC= f / ( p s c − 1 ) f/(psc-1) f/(psc1)

  • 🔧在没有开启溢出中断的情况下,最小捕获频率 = 2000000 ÷ 65535 ≈ 15.25 H z 2000 000 \div 65535 \approx 15.25Hz 2000000÷6553515.25Hz
  • 👉🏻如果开启了溢出中断,那么捕获频率就不受限制。
  • 🔧开启溢出中断的情况下,捕获频率 = 2000000 ÷ N ∗ ( A R R + 1 ) + C R R 1 2000 000 \div N*(ARR+1)+CRR1 2000000÷N(ARR+1)+CRR1 (其中N代表溢出次数,ARR代表装载值)
  • 🔖如果被测量的频率低于1Hz,那么测量就没有多大意义了。

📝输入捕获SlaveMode脉宽测量例程

使用STM32F1利用TIM3通道1产生PWM输出信号,使用TIM2定时器作为信号输入捕获,并开启SlaveMode模式设置为ReSet Mode,同时开启两路极性互补输入捕获。
  • 🌿接线说明:PA6 PWM输出引脚和PA0输入捕获引脚连接到一起即可进行测量。
    STM32 HAL库定时器输入捕获SlaveMode脉宽测量,STM32CubeMX自动配置工程系列,stm32,脉宽测量,输入捕获
  • 🔨TIM2输入捕获配置

STM32 HAL库定时器输入捕获SlaveMode脉宽测量,STM32CubeMX自动配置工程系列,stm32,脉宽测量,输入捕获
STM32 HAL库定时器输入捕获SlaveMode脉宽测量,STM32CubeMX自动配置工程系列,stm32,脉宽测量,输入捕获

  • 🌿TIM3配置输出PWM占空比和频率可以行调整测试。
    STM32 HAL库定时器输入捕获SlaveMode脉宽测量,STM32CubeMX自动配置工程系列,stm32,脉宽测量,输入捕获

  • 🔰如果启用输入捕获中断功能,那么输入捕获中断优先级大于更新中断
    STM32 HAL库定时器输入捕获SlaveMode脉宽测量,STM32CubeMX自动配置工程系列,stm32,脉宽测量,输入捕获

  • 📑main程序代码文章来源地址https://www.toymoban.com/news/detail-597093.html

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * Copyright (c) 2023 STMicroelectronics.
  * All rights reserved.
  *
  * This software is licensed under terms that can be found in the LICENSE file
  * in the root directory of this software component.
  * If no LICENSE file comes with this software, it is provided AS-IS.
  *
  ******************************************************************************
  */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "tim.h"
#include "usart.h"
#include "gpio.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "stdio.h"
#include "string.h"
/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */

/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */

/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/

/* USER CODE BEGIN PV */

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */

/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
    /* USER CODE BEGIN 1 */
    uint8_t USART_TX_Buff[32] = {0};
    uint32_t Duty, Duty_High, ARR, PWM_f;
    /* USER CODE END 1 */

    /* MCU Configuration--------------------------------------------------------*/

    /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
    HAL_Init();

    /* USER CODE BEGIN Init */

    /* USER CODE END Init */

    /* Configure the system clock */
    SystemClock_Config();

    /* USER CODE BEGIN SysInit */

    /* USER CODE END SysInit */

    /* Initialize all configured peripherals */
    MX_GPIO_Init();
    MX_TIM2_Init();
    MX_TIM3_Init();
    MX_USART1_UART_Init();
    /* USER CODE BEGIN 2 */
    HAL_TIM_PWM_Start(&htim3, TIM_CHANNEL_1); //开启PWM输出通道:PA6
//			TIM3->ARR = 1000-1;//自动重装载值
    TIM3->CCR1 = 300;//捕获/比较计数值,PWM占空比5000/1000=50% f=1MHz/1000=1KHz

    TIM2->PSC = 36 - 1; //预分频;f=2MHz
    HAL_TIM_IC_Start(&htim2, TIM_CHANNEL_1); //开启输入捕获上升沿:PA0
    HAL_TIM_IC_Start(&htim2, TIM_CHANNEL_2); //开启输入捕获下降沿:PA0
    /* USER CODE END 2 */

    /* Infinite loop */
    /* USER CODE BEGIN WHILE */
    while(1)
    {
        /* USER CODE END WHILE */

        /* USER CODE BEGIN 3 */
        HAL_Delay(1000);
        ARR = (TIM2->CCR1) + 1; //捕获从上一个上升沿开始到下一个上升沿结束的计数值,也就是一个完整周期的计数值
       // ARR = HAL_TIM_ReadCapturedValue(&htim2, TIM_CHANNEL_1) + 1;//同上
        Duty_High = (TIM2->CCR2) + 1; //捕获从上一个上升沿开始到下降沿之间的计数值,也就是高电平计数值
        //Duty_High = HAL_TIM_ReadCapturedValue(&htim2, TIM_CHANNEL_2) + 1;//同上
				//f = f/psc=1000 000
				//计一个数的时间T:1/f
				//PWM_f  = ARR/f
        PWM_f = 2000/ARR;//KHz, 1/ARR*(T)= 1/ARR*(1/f)= f/ARR
        Duty = Duty_High * 100 / ARR;
        sprintf((char*)USART_TX_Buff, "PWM_f:%dKHz,ARR:%d,Duty_High:%d,Duty:%d%%", PWM_f, ARR, Duty_High, Duty); //打印输入捕获总计数值,高电平计数值
        printf("%s \n", USART_TX_Buff);
        memset((char*)USART_TX_Buff, '\0', strlen((char*)USART_TX_Buff)); //清空数组
    }
    /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
    RCC_OscInitTypeDef RCC_OscInitStruct = {0};
    RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

    /** Initializes the RCC Oscillators according to the specified parameters
    * in the RCC_OscInitTypeDef structure.
    */
    RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
    RCC_OscInitStruct.HSEState = RCC_HSE_ON;
    RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
    RCC_OscInitStruct.HSIState = RCC_HSI_ON;
    RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
    RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
    RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
    if(HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
    {
        Error_Handler();
    }

    /** Initializes the CPU, AHB and APB buses clocks
    */
    RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK
                                  | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
    RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
    RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
    RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
    RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

    if(HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
    {
        Error_Handler();
    }
}

/* USER CODE BEGIN 4 */

/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
    /* USER CODE BEGIN Error_Handler_Debug */
    /* User can add his own implementation to report the HAL error return state */
    __disable_irq();
    while(1)
    {
    }
    /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t* file, uint32_t line)
{
    /* USER CODE BEGIN 6 */
    /* User can add his own implementation to report the file name and line number,
       ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
    /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

  • 📋串口打印
    STM32 HAL库定时器输入捕获SlaveMode脉宽测量,STM32CubeMX自动配置工程系列,stm32,脉宽测量,输入捕获
  • 🌿使能输入捕获中断,相关代码:
int main(void)
{
.........
HAL_TIM_IC_Start_IT(&htim2, TIM_CHANNEL_1);	//启动输入捕获中断       
HAL_TIM_IC_Start_IT(&htim2, TIM_CHANNEL_2);	//启动输入捕获中断 
........
while(1)
{
	......
}

/**
  * @brief 输入捕获回调函数
  * @retval None
  */
void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef* htim)
{
    if(htim->Channel == HAL_TIM_ACTIVE_CHANNEL_1)
    {
    }
    if(htim->Channel == HAL_TIM_ACTIVE_CHANNEL_2)
    {
			ARR = HAL_TIM_ReadCapturedValue(&htim2, TIM_CHANNEL_1)+1;
			Duty_High = HAL_TIM_ReadCapturedValue(&htim2, TIM_CHANNEL_2)+1;
//			ARR = TIM2->CCR1 + 1; //捕获从上一个上升沿开始到下一个上升沿结束的计数值,也就是一个完整周期的计数值
//				Duty_High = TIM2->CCR2 + 1; //捕获从上一个上升沿开始到下降沿之间的计数值,也就是高电平计数值
    }
    __HAL_TIM_CLEAR_IT(&htim2, TIM_IT_UPDATE);//清零中断标志位
}

📚工程源码

链接:https://pan.baidu.com/s/1OJ6JuZt-76A-AjvvB2H3cA 
提取码:p4hf

  • 🔖此文章仅作为个人学习探索知识的总结,不作为他人或引用者的理论依据,由于学识所限,难免会出现错误或纰漏,欢迎大家指正。

到了这里,关于STM32 HAL库定时器输入捕获SlaveMode脉宽测量的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 基于HAL库的STM32单定时器多路输入捕获测量PWM的频率和占空比实现(状态机方式实现)

    目录  写在前面 先回顾下定时器的单路捕获PWM 多路捕获PWM的频率和占空比(状态机实现) 我的思路: 状态图 配置 给出示例代码 测试效果         先有了这篇文章实现了单定时器的多通道测量频率,以外部时钟的方式可测量任意频率的方波),奈何不能多路测试PWM波的频率,

    2024年02月12日
    浏览(45)
  • STM32定时器(输入捕获)

     上一章讲了输出比较的内容,输出比较就是定时器自增,同时和CCR比较,按照自己设置的比较要求,输出REF高低电平,这一章我们讲下面结构图输出比较左边部分,也就是 输入捕获 首先,介绍一下输入捕获 IC(input capture)输入捕获,输入捕获模式下,当通道输入引脚出现

    2024年02月09日
    浏览(35)
  • stm32---定时器输入捕获

            在定时器中断实验章节中我们介绍了通用定时器具有多种功能,输入捕获就是其中一种。 STM32F1除了基本定时器TIM6和TIM7,其他定时器都具有输入捕获功能 。输入捕获可以对输入的信号的上升沿,下降沿或者双边沿进行捕获,通常用于测量输入信号的脉宽、测量

    2024年01月19日
    浏览(45)
  • STM32定时器-输入捕获

    输入捕获工作过程 一句话总结工作过程:通过检测TIMx_CHx上的边沿信号,在边沿信号发生跳变(比如上升沿/下降沿)的时候,将当前定时器的值(TIMx_CNT)存放到对应的捕获/比较寄存器(TIMxCCRx)里面,完成一次捕获。 步骤1:设置输入捕获滤波器(通道1为例) 输入捕获1滤

    2024年02月15日
    浏览(36)
  • stm32 定时器输入捕获实验

    目录 一,简介 二,配置过程  一,设置输入捕获滤波器​ 二,设置输入极性 三,设置输入捕获映射通道  四,设置输入捕获分频器  五,设置中断  ​三,寄存器 四,库函数 五,一般步骤   六,软件部分 输入捕获模式可以用来测量脉冲宽度或者测量频率 原理图 如图  

    2024年01月21日
    浏览(52)
  • STM32 定时器输入捕获3——捕获超长高电平

            第一章:https://blog.csdn.net/m0_73671341/article/details/134773615?spm=1001.2014.3001.5501         第二章:https://blog.csdn.net/m0_73671341/article/details/134938332?spm=1001.2014.3001.5501         从第一章的定时器捕获我们可以知道,即使把定时器捕获时长设置到最大也只有65.536ms,而第二章就

    2024年01月18日
    浏览(36)
  • STM32 定时器输入捕获2——捕获高电平时长

            由上图我们可以知道,高电平时间=t2-t1。在代码中,可以记录此时t1的时间然后再记录t2的时间,t2-t1,就是我们所想要的答案。         但是,还有更简单一点点的,当到达t1的时候,我们把定时器清零,然后直接读出t2,就是这个高电平的时间。 1.当TIM3的TIM_F

    2024年01月18日
    浏览(45)
  • STM32标准库通用定时器输入捕获

    输入捕获为STM32定时器的一个功能,可以用来测量输入信号的频率和占空比。 具体原理:当输入信号经过比较捕获通道时,STM32会依据通道的极性设置决定是否触发捕获中断TIM_IT_CCx。此时定时器会将当前计数值TIMx-CNT的值保存在TIMx-CCRx中,通过计算两次捕获中断的时间差便可

    2024年03月11日
    浏览(41)
  • STM32定时器输入捕获测量高电平时间

    本篇内容要求读者对STM32通用定时器有一点理解,如有不解,请看 夜深人静学32系列15——通用定时器 输入捕获是STM32通用定时器的一种功能,可以捕获特定引脚的电平变化(上升沿/下降沿) 对于一个变化的信号。只需要测量上升沿与下降沿的时间间隔,即可计算出高电平的

    2024年02月21日
    浏览(40)
  • STM32F4_定时器输入捕获详解

    目录 1. 输入捕获简介 2. 输入捕获框图 3. 输入捕获模式 4. 相关寄存器 4.1 TIMx_ARR、TIMx_PSC 4.2 捕获/比较寄存器1:TIMx_CCMR1 4.3 捕获/比较使能寄存器 TIMx_CCER 4.4 中断使能寄存器 TIMx_DIER 5. 库函数配置输入捕获高电平脉冲宽度 6. 实验程序 6.1 main.c 6.2 IntputCapture.c 6.3 IntputCapture.h    

    2024年02月04日
    浏览(45)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包