数字人解决方案——基于真人视频的三维重建数字人源码与训练方法

这篇具有很好参考价值的文章主要介绍了数字人解决方案——基于真人视频的三维重建数字人源码与训练方法。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

前言

1.真人视频三维重建数字人源码是基于NeRF改进的RAD-NeRF,NeRF(Neural Radiance Fields)是最早在2020年ECCV会议上的Best Paper,其将隐式表达推上了一个新的高度,仅用 2D 的 posed images 作为监督,即可表示复杂的三维场景。

NeRF其输入稀疏的多角度带pose的图像训练得到一个神经辐射场模型,根据这个模型可以渲染出任意视角下的清晰的照片。也可以简要概括为用一个MLP神经网络去隐式地学习一个三维场景。

NeRF最先是应用在新视点合成方向,由于其超强的隐式表达三维信息的能力后续在三维重建方向迅速发展起来。

2.NeRF使用的场景有几个主流应用方向:

新视点合成:

数字人解决方案——基于真人视频的三维重建数字人源码与训练方法,NeRF,数字人,虚拟现实,python,数字人直播

物体精细重建:

数字人解决方案——基于真人视频的三维重建数字人源码与训练方法,NeRF,数字人,虚拟现实,python,数字人直播

城市重建:

数字人解决方案——基于真人视频的三维重建数字人源码与训练方法,NeRF,数字人,虚拟现实,python,数字人直播

人体重建:

数字人解决方案——基于真人视频的三维重建数字人源码与训练方法,NeRF,数字人,虚拟现实,python,数字人直播

3.真人视频合成

通过音频空间分解的实时神经辐射谈话肖像合成

数字人解决方案——基于真人视频的三维重建数字人源码与训练方法,NeRF,数字人,虚拟现实,python,数字人直播

3.讨论群 企鹅:787501969

一、训练环境

1.系统要求

我是在win下训练,训练的环境为win 10,GPU RTX 3080 12G,CUDA 11.7,cudnn 8.5,Anaconda 3,Vs2019。

2.环境依赖

使用conda环境进行安装,python 3.10

#下载源码
git clone https://github.com/ashawkey/RAD-NeRF.git
cd RAD-NeRF
#创建虚拟环境
conda create --name vrh python=3.10
activate vrh
#pytorch 要单独对应cuda进行安装,要不然训练时使用不了GPU
conda install pytorch==2.0.0 torchvision==0.15.0 torchaudio==2.0.0 pytorch-cuda=11.7 -c pytorch -c nvidia
conda install -c fvcore -c iopath -c conda-forge fvcore iopath
#安装所需要的依赖
pip install -r requirements.txt

3.windows下安装pytorch3d,这个依赖还是要在刚刚创建的conda环境里面进行安装。

git clone https://github.com/facebookresearch/pytorch3d.git
cd pytorch3d
python setup.py install

安装pytorch3d很慢,也有可能中间报错退出,这里建议安装vs 生成工具。Microsoft C++ 生成工具 - Visual Studiohttps://visualstudio.microsoft.com/zh-hans/visual-cpp-build-tools/

二、数据准备

1.从网上上下载或者自己拍摄一段不大于5分钟的视频,视频人像单一,面对镜头,背景尽量简单,这是方便等下进行抠人像与分割人脸用的。我这里从网上下载了一段5分钟左右的视频,然后视频编辑软件,只切取一部分上半身和头部的画面。按1比1切取。这里的剪切尺寸不做要求,只是1比1就可以了。

数字人解决方案——基于真人视频的三维重建数字人源码与训练方法,NeRF,数字人,虚拟现实,python,数字人直播

 2.把视频剪切项目参数设置成1比1,分辨率设成512*512。数字人解决方案——基于真人视频的三维重建数字人源码与训练方法,NeRF,数字人,虚拟现实,python,数字人直播

3.数据长宽按512*512,25fps,mp4格式导出视频。

数字人解决方案——基于真人视频的三维重建数字人源码与训练方法,NeRF,数字人,虚拟现实,python,数字人直播

4.把导出的数据放到项目目录下,如下图所示, 我这里面在data下载创建了一个与文件名一样的目录,然后把刚刚剪切的视频放进目录里面。

数字人解决方案——基于真人视频的三维重建数字人源码与训练方法,NeRF,数字人,虚拟现实,python,数字人直播

视频数据如下:

数字人解决方案——基于真人视频的三维重建数字人源码与训练方法,NeRF,数字人,虚拟现实,python,数字人直播

三、人脸模型准备

1.人脸解析模型

 模型是从AD-NeRF这个项目获取。下载AD-NeRF这个项目。

git clone https://github.com/YudongGuo/AD-NeRF.git

把AD-NeRF项目下的data_utils/face_parsing/79999_iter.pth复制到RAD-NeRF/data_utils/face_parsing/79999_iter.pth 。

或者在RAD-NeRF目录直接下载,这种方式可能会出现下载不了。

wget https://github.com/YudongGuo/AD-NeRF/blob/master/data_util/face_parsing/79999_iter.pth?raw=true -O data_utils/face_parsing/79999_iter.pth

2.basel脸部模型处理

从AD-NeRF/data_utils/face_trackong项目里面的3DMM这个目录复制到Rad-NeRF/data_utils/face_trackong里面

数字人解决方案——基于真人视频的三维重建数字人源码与训练方法,NeRF,数字人,虚拟现实,python,数字人直播

 移动到的位置:

数字人解决方案——基于真人视频的三维重建数字人源码与训练方法,NeRF,数字人,虚拟现实,python,数字人直播

或者是在Rad_NeRF项目下,直接下载,命令如下:

wget https://github.com/YudongGuo/AD-NeRF/blob/master/data_util/face_parsing/79999_iter.pth?raw=true -O data_utils/face_parsing/79999_iter.pth

## prepare basel face model
# 1. download `01_MorphableModel.mat` from https://faces.dmi.unibas.ch/bfm/main.php?nav=1-2&id=downloads and put it under `data_utils/face_tracking/3DMM/`
# 2. download other necessary files from AD-NeRF's repository:
wget https://github.com/YudongGuo/AD-NeRF/blob/master/data_util/face_tracking/3DMM/exp_info.npy?raw=true -O data_utils/face_tracking/3DMM/exp_info.npy
wget https://github.com/YudongGuo/AD-NeRF/blob/master/data_util/face_tracking/3DMM/keys_info.npy?raw=true -O data_utils/face_tracking/3DMM/keys_info.npy
wget https://github.com/YudongGuo/AD-NeRF/blob/master/data_util/face_tracking/3DMM/sub_mesh.obj?raw=true -O data_utils/face_tracking/3DMM/sub_mesh.obj
wget https://github.com/YudongGuo/AD-NeRF/blob/master/data_util/face_tracking/3DMM/topology_info.npy?raw=true -O data_utils/face_tracking/3DMM/topology_info.npy

从 https://faces.dmi.unibas.ch/bfm/main.php?nav=1-2&id=downloads 下载01_MorphableModel.mat放到Rad-NeRF/data_utils/face_trackong/3DMM里面。

运行

cd xx/xx/Rad-NeRF/data_utils/face_tracking
python convert_BFM.py

四、数据处理

数据处理要花的时间跟视频长短有关,一般要1个小时以上,有两种处理方式,一种是直接一次运行所有步骤,但处理过程可能存在错误,所以建议使用第二种,按步骤来处理.

1.一次性处理数据

#按自己的数据与目录来运行对应的路径
python data_utils/process.py data/vrhm/vrhm.mp4

2.分步处理

python data_utils/process.py data/vrhm/vrhm.mp4 --task 1

--task 1

分离音频

--task 2

生成aud_eo.npy

--task 3

把视频拆分成图像

--task 4

分割人像

--task 5

extracted background image

--task 6

 extract torso and gt images for data/woman

--task 7

extracted face landmarks 生成lms文件 

--task 8

perform face tracking
 

--task 9
保存所有数据

在这一步会下载四个模型,如果没有魔法上网,这四个模型下载很慢,或者直接下到一半就崩掉了。

也可以先把这个模型下载好之后放到指定的目录,在处理的过程中就不会再次下载,模型下载路径:

https://download.pytorch.org/models/resnet18-5c106cde.pth
https://www.adrianbulat.com/downloads/python-fan/s3fd-619a316812.pth
https://www.adrianbulat.com/downloads/python-fan/2DFAN4-cd938726ad.zip
https://download.pytorch.org/models/alexnet-owt-7be5be79.pth

下载完成之后,把四个模型放到指定目录,如果目录则创建目录之后再放入。目录如下:

数字人解决方案——基于真人视频的三维重建数字人源码与训练方法,NeRF,数字人,虚拟现实,python,数字人直播

 2.处理数据时,会在data所放的视频目录下生成以下几个目录:

数字人解决方案——基于真人视频的三维重建数字人源码与训练方法,NeRF,数字人,虚拟现实,python,数字人直播

 这里主要注意的是parsing这个目录,目录下的数据是分割后的数据。

数字人解决方案——基于真人视频的三维重建数字人源码与训练方法,NeRF,数字人,虚拟现实,python,数字人直播

 这里要注意分割的质量,如果分割质量不好,就要借助别的工具先做人像分割,要不然训练出来的人物会出现透背景或者断开的现象。比如我之后处理的数据:

数字人解决方案——基于真人视频的三维重建数字人源码与训练方法,NeRF,数字人,虚拟现实,python,数字人直播

 这里人的脖子下面有一块白的色块,训练完成之后,生成数字人才发现,这块区域是分割模型把它当背景了,合成视频时,这块是绿色的背景,直接废了。

 在数据准备中,也尽量不要这种头发披下来的,很容易出现拼接错落的现象。

数字人解决方案——基于真人视频的三维重建数字人源码与训练方法,NeRF,数字人,虚拟现实,python,数字人直播

 我在使用这个数据训练时,刚刚开始不清楚其中的关键因素,第一次训练效果如下,能感觉到头部与身体的连接并不和协。

数字人解决方案——基于真人视频的三维重建数字人源码与训练方法,NeRF,数字人,虚拟现实,python,数字人直播

五、模型训练

先看看训练代码的给的参数,训练时只要关注几个主要参数就可以了。

import torch
import argparse

from nerf.provider import NeRFDataset
from nerf.gui import NeRFGUI
from nerf.utils import *

# torch.autograd.set_detect_anomaly(True)

if __name__ == '__main__':

    parser = argparse.ArgumentParser()
    parser.add_argument('path', type=str)
    parser.add_argument('-O', action='store_true', help="equals --fp16 --cuda_ray --exp_eye")
    parser.add_argument('--test', action='store_true', help="test mode (load model and test dataset)")
    parser.add_argument('--test_train', action='store_true', help="test mode (load model and train dataset)")
    parser.add_argument('--data_range', type=int, nargs='*', default=[0, -1], help="data range to use")
    parser.add_argument('--workspace', type=str, default='workspace')
    parser.add_argument('--seed', type=int, default=0)

    ### training options
    parser.add_argument('--iters', type=int, default=200000, help="training iters")
    parser.add_argument('--lr', type=float, default=5e-3, help="initial learning rate")
    parser.add_argument('--lr_net', type=float, default=5e-4, help="initial learning rate")
    parser.add_argument('--ckpt', type=str, default='latest')
    parser.add_argument('--num_rays', type=int, default=4096 * 16, help="num rays sampled per image for each training step")
    parser.add_argument('--cuda_ray', action='store_true', help="use CUDA raymarching instead of pytorch")
    parser.add_argument('--max_steps', type=int, default=16, help="max num steps sampled per ray (only valid when using --cuda_ray)")
    parser.add_argument('--num_steps', type=int, default=16, help="num steps sampled per ray (only valid when NOT using --cuda_ray)")
    parser.add_argument('--upsample_steps', type=int, default=0, help="num steps up-sampled per ray (only valid when NOT using --cuda_ray)")
    parser.add_argument('--update_extra_interval', type=int, default=16, help="iter interval to update extra status (only valid when using --cuda_ray)")
    parser.add_argument('--max_ray_batch', type=int, default=4096, help="batch size of rays at inference to avoid OOM (only valid when NOT using --cuda_ray)")


    ### network backbone options
    parser.add_argument('--fp16', action='store_true', help="use amp mixed precision training")
    
    parser.add_argument('--lambda_amb', type=float, default=0.1, help="lambda for ambient loss")
    
    parser.add_argument('--bg_img', type=str, default='', help="background image")
    parser.add_argument('--fbg', action='store_true', help="frame-wise bg")
    parser.add_argument('--exp_eye', action='store_true', help="explicitly control the eyes")
    parser.add_argument('--fix_eye', type=float, default=-1, help="fixed eye area, negative to disable, set to 0-0.3 for a reasonable eye")
    parser.add_argument('--smooth_eye', action='store_true', help="smooth the eye area sequence")

    parser.add_argument('--torso_shrink', type=float, default=0.8, help="shrink bg coords to allow more flexibility in deform")

    ### dataset options
    parser.add_argument('--color_space', type=str, default='srgb', help="Color space, supports (linear, srgb)")
    parser.add_argument('--preload', type=int, default=0, help="0 means load data from disk on-the-fly, 1 means preload to CPU, 2 means GPU.")
    # (the default value is for the fox dataset)
    parser.add_argument('--bound', type=float, default=1, help="assume the scene is bounded in box[-bound, bound]^3, if > 1, will invoke adaptive ray marching.")
    parser.add_argument('--scale', type=float, default=4, help="scale camera location into box[-bound, bound]^3")
    parser.add_argument('--offset', type=float, nargs='*', default=[0, 0, 0], help="offset of camera location")
    parser.add_argument('--dt_gamma', type=float, default=1/256, help="dt_gamma (>=0) for adaptive ray marching. set to 0 to disable, >0 to accelerate rendering (but usually with worse quality)")
    parser.add_argument('--min_near', type=float, default=0.05, help="minimum near distance for camera")
    parser.add_argument('--density_thresh', type=float, default=10, help="threshold for density grid to be occupied (sigma)")
    parser.add_argument('--density_thresh_torso', type=float, default=0.01, help="threshold for density grid to be occupied (alpha)")
    parser.add_argument('--patch_size', type=int, default=1, help="[experimental] render patches in training, so as to apply LPIPS loss. 1 means disabled, use [64, 32, 16] to enable")

    parser.add_argument('--finetune_lips', action='store_true', help="use LPIPS and landmarks to fine tune lips region")
    parser.add_argument('--smooth_lips', action='store_true', help="smooth the enc_a in a exponential decay way...")

    parser.add_argument('--torso', action='store_true', help="fix head and train torso")
    parser.add_argument('--head_ckpt', type=str, default='', help="head model")

    ### GUI options
    parser.add_argument('--gui', action='store_true', help="start a GUI")
    parser.add_argument('--W', type=int, default=450, help="GUI width")
    parser.add_argument('--H', type=int, default=450, help="GUI height")
    parser.add_argument('--radius', type=float, default=3.35, help="default GUI camera radius from center")
    parser.add_argument('--fovy', type=float, default=21.24, help="default GUI camera fovy")
    parser.add_argument('--max_spp', type=int, default=1, help="GUI rendering max sample per pixel")

    ### else
    parser.add_argument('--att', type=int, default=2, help="audio attention mode (0 = turn off, 1 = left-direction, 2 = bi-direction)")
    parser.add_argument('--aud', type=str, default='', help="audio source (empty will load the default, else should be a path to a npy file)")
    parser.add_argument('--emb', action='store_true', help="use audio class + embedding instead of logits")

    parser.add_argument('--ind_dim', type=int, default=4, help="individual code dim, 0 to turn off")
    parser.add_argument('--ind_num', type=int, default=10000, help="number of individual codes, should be larger than training dataset size")

    parser.add_argument('--ind_dim_torso', type=int, default=8, help="individual code dim, 0 to turn off")

    parser.add_argument('--amb_dim', type=int, default=2, help="ambient dimension")
    parser.add_argument('--part', action='store_true', help="use partial training data (1/10)")
    parser.add_argument('--part2', action='store_true', help="use partial training data (first 15s)")

    parser.add_argument('--train_camera', action='store_true', help="optimize camera pose")
    parser.add_argument('--smooth_path', action='store_true', help="brute-force smooth camera pose trajectory with a window size")
    parser.add_argument('--smooth_path_window', type=int, default=7, help="smoothing window size")

    # asr
    parser.add_argument('--asr', action='store_true', help="load asr for real-time app")
    parser.add_argument('--asr_wav', type=str, default='', help="load the wav and use as input")
    parser.add_argument('--asr_play', action='store_true', help="play out the audio")

    parser.add_argument('--asr_model', type=str, default='cpierse/wav2vec2-large-xlsr-53-esperanto')
    # parser.add_argument('--asr_model', type=str, default='facebook/wav2vec2-large-960h-lv60-self')

    parser.add_argument('--asr_save_feats', action='store_true')
    # audio FPS
    parser.add_argument('--fps', type=int, default=50)
    # sliding window left-middle-right length (unit: 20ms)
    parser.add_argument('-l', type=int, default=10)
    parser.add_argument('-m', type=int, default=50)
    parser.add_argument('-r', type=int, default=10)

    opt = parser.parse_args()

    if opt.O:
        opt.fp16 = True
        opt.exp_eye = True
    
    if opt.test:
        opt.smooth_path = True
        opt.smooth_eye = True
        opt.smooth_lips = True
    
    opt.cuda_ray = True
    # assert opt.cuda_ray, "Only support CUDA ray mode."

    if opt.patch_size > 1:
        # assert opt.patch_size > 16, "patch_size should > 16 to run LPIPS loss."
        assert opt.num_rays % (opt.patch_size ** 2) == 0, "patch_size ** 2 should be dividable by num_rays."
    
    if opt.finetune_lips:
        # do not update density grid in finetune stage
        opt.update_extra_interval = 1e9
    
    from nerf.network import NeRFNetwork

    print(opt)
    
    seed_everything(opt.seed)

    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

    model = NeRFNetwork(opt)

    # manually load state dict for head
    if opt.torso and opt.head_ckpt != '':
        
        model_dict = torch.load(opt.head_ckpt, map_location='cpu')['model']

        missing_keys, unexpected_keys = model.load_state_dict(model_dict, strict=False)

        if len(missing_keys) > 0:
            print(f"[WARN] missing keys: {missing_keys}")
        if len(unexpected_keys) > 0:
            print(f"[WARN] unexpected keys: {unexpected_keys}")   

        # freeze these keys
        for k, v in model.named_parameters():
            if k in model_dict:
                # print(f'[INFO] freeze {k}, {v.shape}')
                v.requires_grad = False

    
    # print(model)

    criterion = torch.nn.MSELoss(reduction='none')

    if opt.test:
        
        if opt.gui:
            metrics = [] # use no metric in GUI for faster initialization...
        else:
            # metrics = [PSNRMeter(), LPIPSMeter(device=device)]
            metrics = [PSNRMeter(), LPIPSMeter(device=device), LMDMeter(backend='fan')]

        trainer = Trainer('ngp', opt, model, device=device, workspace=opt.workspace, criterion=criterion, fp16=opt.fp16, metrics=metrics, use_checkpoint=opt.ckpt)

        if opt.test_train:
            test_set = NeRFDataset(opt, device=device, type='train')
            # a manual fix to test on the training dataset
            test_set.training = False 
            test_set.num_rays = -1
            test_loader = test_set.dataloader()
        else:
            test_loader = NeRFDataset(opt, device=device, type='test').dataloader()


        # temp fix: for update_extra_states
        model.aud_features = test_loader._data.auds
        model.eye_areas = test_loader._data.eye_area

        if opt.gui:
            # we still need test_loader to provide audio features for testing.
            with NeRFGUI(opt, trainer, test_loader) as gui:
                gui.render()
        
        else:
            
            ### evaluate metrics (slow)
            if test_loader.has_gt:
                trainer.evaluate(test_loader)

            ### test and save video (fast)  
            trainer.test(test_loader)
    
    else:

        optimizer = lambda model: torch.optim.Adam(model.get_params(opt.lr, opt.lr_net), betas=(0.9, 0.99), eps=1e-15)

        train_loader = NeRFDataset(opt, device=device, type='train').dataloader()

        assert len(train_loader) < opt.ind_num, f"[ERROR] dataset too many frames: {len(train_loader)}, please increase --ind_num to this number!"

        # temp fix: for update_extra_states
        model.aud_features = train_loader._data.auds
        model.eye_area = train_loader._data.eye_area
        model.poses = train_loader._data.poses

        # decay to 0.1 * init_lr at last iter step
        if opt.finetune_lips:
            scheduler = lambda optimizer: optim.lr_scheduler.LambdaLR(optimizer, lambda iter: 0.05 ** (iter / opt.iters))
        else:
            scheduler = lambda optimizer: optim.lr_scheduler.LambdaLR(optimizer, lambda iter: 0.1 ** (iter / opt.iters))

        metrics = [PSNRMeter(), LPIPSMeter(device=device)]
        
        eval_interval = max(1, int(5000 / len(train_loader)))
        trainer = Trainer('ngp', opt, model, device=device, workspace=opt.workspace, optimizer=optimizer, criterion=criterion, ema_decay=0.95, fp16=opt.fp16, lr_scheduler=scheduler, scheduler_update_every_step=True, metrics=metrics, use_checkpoint=opt.ckpt, eval_interval=eval_interval)

        if opt.gui:
            with NeRFGUI(opt, trainer, train_loader) as gui:
                gui.render()
        
        else:
            valid_loader = NeRFDataset(opt, device=device, type='val', downscale=1).dataloader()

            max_epoch = np.ceil(opt.iters / len(train_loader)).astype(np.int32)
            print(f'[INFO] max_epoch = {max_epoch}')
            trainer.train(train_loader, valid_loader, max_epoch)

            # free some mem
            del train_loader, valid_loader
            torch.cuda.empty_cache()

            # also test
            test_loader = NeRFDataset(opt, device=device, type='test').dataloader()
            
            if test_loader.has_gt:
                trainer.evaluate(test_loader) # blender has gt, so evaluate it.

            trainer.test(test_loader)

参数:

--preload 0:从硬盘加载数据
--preload 1: 指定CPU,约70G内存 
--preload 2: 指定GPU,约24G显存 

1.头部训练

python main.py data/vrhm/  --workspace trial_vrhm/ -O --iters 200000

2.唇部微调

python main.py data/vrhm/  --workspace trial_vrhm/ -O --iters 500000 --finetune_lips

3.身体部分训练

python main.py data/vrhm/  --workspace trial_vrhm_torso/ -O --torso --head_ckpt <trial_ID>/checkpoints/npg_xxx.pth> --iters 200000 --preload 2

六、报错解决

报错No module named 'sklearn'

pip install -U scikit-learn

:如果对该项目感兴趣或者在安装的过程中遇到什么错误的的可以加我的企鹅群:487350510,大家一起探讨。文章来源地址https://www.toymoban.com/news/detail-597250.html

到了这里,关于数字人解决方案——基于真人视频的三维重建数字人源码与训练方法的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 应用案例 | 基于三维机器视觉的自动化无序分拣解决方案

    ​ 近年来,电商行业蓬勃发展,订单的海量化、订单类型的碎片化,使物流行业朝着“多品种、无边界、分类广”的方向迅速发展。根据许多研究机构的预测,电子商务销售额预计将以每年两位数的速度增长,推动整个行业的规模不断扩大。 物流分拣一直是一项单调乏味的

    2024年01月17日
    浏览(47)
  • 应用案例|基于三维机器视觉的机器人纸箱拆码垛应用解决方案

      Part.1   项目背景 在现代物流和制造行业中,纸箱的拆码垛操作是一项重要且频繁的任务。传统的纸箱拆码垛工作通常由人工完成,这种方式存在劳动强度大、生产效率低以及人为操作容易导致错误等问题,严重影响物料的安全运输和质量。为了满足物流行业大规模生产和

    2024年02月13日
    浏览(49)
  • 应用案例 | 基于三维机器视觉的机器人麻袋拆垛应用解决方案

    ​Part.1   项目背景 在现代物流和制造行业中,麻袋的拆垛操作是一个重要且频繁的任务。传统的麻袋拆垛工作通常由人工完成,分拣效率较低,人力成本较高,现场麻袋堆叠、变形严重,垛型不规则、不固定,严重影响分拣效率。 基于三维机器视觉的机器人麻袋拆垛解决方

    2024年02月10日
    浏览(56)
  • 数字人解决方案——Champ单个视频单张图像生成可控且一致的人体视频生成

    Champ是阿里巴巴集团、南京大学和复旦大学的研究团队共同提出了一种创新的人体动画生成技术,Champ能够在仅有一段原始视频和一张静态图片的情况下,激活图片中的人物,使其按照视频中的动作进行动态表现,极大地促进了虚拟主播和其他虚拟角色生成技术的发展。 Cham

    2024年04月10日
    浏览(47)
  • 数字人解决方案— SadTalker语音驱动图像生成视频原理与源码部署

    随着数字人物概念的兴起和生成技术的不断发展,将照片中的人物与音频输入进行同步变得越来越容易。然而,目前仍存在一些问题,比如头部运动不自然、面部表情扭曲以及图片和视频中人物面部的差异等。为了解决这些问题,来自西安交通大学等机构的研究人员提出了

    2024年04月22日
    浏览(37)
  • 基于Prism框架的WPF前端框架开发《知产代理数字化解决方案》

    最近新开发了一套WPF前端界面框架,叫《知产代理数字化解决方案》,采用了时下流行的Prism框架作为整个系统的基础架构,演示了Prism中的IRegionManager区域管理器、IDialogAware对话框、IDialogService对话框服务、IContainerExtension容器等用法。 系统对常用的控件进行了模板和样式开发

    2024年01月19日
    浏览(59)
  • 基于视频智能分析技术的AI烟火检测算法解决方案

    根据国家消防救援局公布的数据显示,2023年共接报处置各类警情213.8万起,督促整改风险隐患397万处。火灾危害巨大,必须引起重视。传统靠人工报警的方法存在人员管理难、场地数量多且分散等问题,无法有效发现险情降低火灾损失。利用智能分析网关V4烟火检测算法,可

    2024年01月22日
    浏览(66)
  • 浅析景区慢直播的需求与基于视频技术的解决方案

    从春节到“五一”假期,旅游市场高开稳走,复苏持续提速。“慢直播”是一种特别的直播形式,没有主持人,也没有绚丽的镜头切换以及精美的后期制作,只用固定机位拍摄来更加真实地展现事件现场,以很低的制作成本、“无添加”的真实画面呈现给观众,其独特的真实

    2024年02月10日
    浏览(38)
  • 深入浅出基于HLS流媒体协议视频加密的解决方案

    一套简单的基于HLS流媒体协议,使用video.js + NodeJS + FFmpeg等相关技术实现的m3u8+ts+aes128视频加密及播放的解决方案示例。 项目简介 起初是为了将工作中已有的基于Flash的视频播放器替换为不依赖Flash的HTML5视频播放器,主要使用了现有的video.js开源播放器做的定制化开发。当完

    2023年04月09日
    浏览(43)
  • 基于WebRTC技术的EasyRTC视频云服务系统在线视频客服解决方案

    随着互联网技术的发展,视频客服也成为服务行业的标配体验,基于WebRTC实时通信技术,客服人员与用户可以建立实时双向的视频交互与沟通。借助视频客服功能可以更加直观地了解用户的需求,提高沟通效率,并帮助用户解决问题。视频客服作为移动互联时代+客服的最佳实

    2024年01月25日
    浏览(43)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包