MATLAB学习记录:标准化制图/图标/字号/字体/label

这篇具有很好参考价值的文章主要介绍了MATLAB学习记录:标准化制图/图标/字号/字体/label。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1、使用matlab绘图指令

>> t=1:100;
>> y1=sin(t/50*2*pi);
>> y2=cos(t/50*2*pi);
>> plot(t,y1)
>> hold on
>> plot(t,y2)

plot为绘图指令,其中第一个变量为x轴,第二个变量为y轴,若要在一张图上绘制多个图案,则需要使用hold on命令,然后执行下一个画图命令。

2、打开help文件查看指令的命令

>> doc plot

以上即为查看plot指令的用法文章来源地址https://www.toymoban.com/news/detail-597504.html

3、标准化绘图

% 获取/生产 原始数据
t=1:100;
y1=sin(t/50*2*pi);
y2=cos(t/50*2*pi);

% 横纵坐标标注
xlabel0 = 't(s)';
ylabel0 = 'I(A)';

% 设置绘图曲线的宽度
lw=1.5;
% 设置绘图的字体大小
ft=12; % FontSize
% 设置绘图的字体样式
fn_en='Times New Roman'; %英文字体新罗马

% 声明一个新figure
figure();
ax1=subplot(1,1,1);

plot(t,y1,'LineWidth',lw);
hold on
plot(t,y2,'LineWidth',lw);

% 设置x轴范围和标注
xlabel(ax1,xlabel0,'FontSize',ft,'FontName',fn_en);
% 设置y轴范围和标注
ylabel(ax1,ylabel0,'FontSize',ft,'FontName',fn_en);

grid(ax1,'on');
ax1.FontSize = ft;
ax1.FontName =fn_en;
% 设置绘图的位置500,500,大小 700宽 300高
set(gcf,'Position',[500,500,400,240]);

到了这里,关于MATLAB学习记录:标准化制图/图标/字号/字体/label的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • JAVA学习-网络编程.Java11标准化的HTTP Client

            Java 11引入了标准化的HTTP Client,它提供了一种现代化、灵活且易于使用的方式来进行HTTP通信。下面是关于Java 11标准化的HTTP Client的概述以及与其他比较和高级应用的说明:         Java 11标准化的HTTP Client是一种替代HttpURLConnection的新的HTTP客户端库。它提供了更

    2024年04月09日
    浏览(36)
  • 深入理解机器学习——数据预处理:归一化 (Normalization)与标准化 (Standardization)

    分类目录:《深入理解机器学习》总目录 归一化 (Normalization)和标准化 (Standardization)都是特征缩放的方法。特征缩放是机器学习预处理数据中最重要的步骤之一,可以加快梯度下降,也可以消除不同量纲之间的差异并提升模型精度。 归一化(Normalization)是将一组数据变

    2024年02月08日
    浏览(42)
  • 数据无量纲化 学习(2):数据缩放(数据标准化 / 数据无量纲化 )的作用、适用场景、具体方法

    将不同规格的数据转换到同一规格,或将不同分布的数据转换到某个特定分布的需求,这种需求统称为将数据“无量纲化”。 在以梯度和矩阵为核心的算法中,譬如逻辑回归,支持向量机,神经网络,无量纲化可以加快求解速度; 在距离类模型,譬如K近邻,KMeans聚类中,无

    2023年04月08日
    浏览(33)
  • 【Python机器学习】卷积神经网络卷积层、池化层、Flatten层、批标准化层的讲解(图文解释)

    卷积神经网络(convolutional neural network, CNN)在提出之初被成功应用于手写字符图像识别,2012年的AlexNet网络在图像分类任务中取得成功,此后,卷积神经网络发展迅速,现在已经被广泛应用于图形、图像、语音识别等领域。 图片的像素数往往非常大,如果用多层全连接网络来

    2024年02月08日
    浏览(42)
  • 标准化体系建设(上):如何建立应用标准化体系和模型?

    今天我专门来讲讲标准化这个工作。可以说这项工作是运维过程中最基础、最重要的,但也是最容易被忽视的一个环节。 我做过多次公开演讲,每次讲到这个环节,通常会有单独的一页PPT,就放四个字,字号加大加粗,重复三遍,这四个字就是“标准先行”,然后演讲过程中

    2024年02月08日
    浏览(44)
  • python实现z-score标准化和0-1标准化

    目录 标准化处理 0-1标准化: z-score标准化: 1、用自带的函数来操作 实现z-score标准化 实现0-1标准化 2、自定义函数实现 实现z-score标准化 实现0-1标准化 对输出结果范围有要求,数据较为稳定的,不存在极端的最大最小值 数据存在异常值和较多的噪音,可以间接通过中心化避

    2024年02月11日
    浏览(43)
  • LA@二次型标准形@标准化问题介绍和合同对角化@二次型可标准化定理

    如果二次型只含有变量的平方项,则称之为 二次型的标准形 或 法式 ,即 f ( y 1 , ⋯   , y n ) f(y_1,cdots,y_n) f ( y 1 ​ , ⋯ , y n ​ ) = ∑ i = 1 n k i y i 2 sum_{i=1}^{n}k_iy_i^2 ∑ i = 1 n ​ k i ​ y i 2 ​ 标准形的矩阵式 f ( y 1 , ⋯   , y n ) = ∑ i n k i y i 2 = ( y 1 , y 2 , ⋯   , y n ) ( k 1 0 ⋯

    2024年02月09日
    浏览(53)
  • 不要再搞混标准化与归一化啦,数据标准化与数据归一化的区别!!

    数据的标准化是将数据按照一定的 数学规则进行转换 ,使得数据满足特定的标准,通常是使数据满足正态分布或标准差为1的标准。 标准化的常见方法包括 最小-最大标准化 和 Z-score标准化 。最小-最大标准化将数据映射到 [0,1 ]的范围内,最小-最大标准化将数据映射到0-1区间

    2024年01月21日
    浏览(54)
  • GEE:影像标准化

    本文将介绍在Google Earth Engine (GEE)平台上进行影像标准化的公式和代码。 影像标准化是一种预处理方法,用于将不同区域、不同时间、不同传感器拍摄的影像进行比较和分析。在GEE平台上进行影像标准化,可以使用本文代码,本文以EVI为例,将影像进行了标准化处理。 其结

    2023年04月09日
    浏览(59)
  • 数据标准化方法

    今天看到了“指数移动平均窗口标准化”,就研究了一下这是个啥东西,然后又顺便看了一下其他的数据标准化方法,这里顺便记录一下,方便以后查阅。 zscore标准化是一种 基于数据分布的标准化方法 。它的基本思想是 将数据转换为均值为0,标准差为1的分布 ,从而使得数

    2023年04月22日
    浏览(49)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包