报童模型( The Newsvendor Problem)及其拓展(加入惩罚成本)

这篇具有很好参考价值的文章主要介绍了报童模型( The Newsvendor Problem)及其拓展(加入惩罚成本)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1报童模型的定义和阐述

每天早上,报童以批发价 c c c元/份采购当天的报纸,然后以零售价 p p p元/份售卖。如果当天报纸没有卖完,则以 s s s元/份的价格卖给废品回收站。不失一般性,假设 p > c > s p > c > s p>c>s。用随机变量 D D D表示当天的需求量,并已知其概率分布函数和密度分布函数分别为 F ( d ) 和 f ( d ) F(d)和f(d) F(d)f(d)。求使得期望收益最大的采购量 x x x

拓展:未满足需要将支付惩罚成本 r r r

2求解过程

推导可得:
m a x ( x , D ) + m i n ( x , D ) = x + D ; m i n ( x , 0 ) = − m a x ( − x , 0 ) max(x,D)+min(x,D)=x+D; min(x,0)=-max(-x,0) max(x,D)+min(x,D)=x+D;min(x,0=max(x,0)

2.1利润函数

将上述公式带入利润函数求解:
π ( x , D ) π(x,D) π(x,D)
= p ⋅ m i n ( x , D ) + s ⋅ m a x ( x − D , 0 ) − c ⋅ x =p⋅min(x,D)+s⋅max(x−D,0)−c⋅x =pmin(x,D)+smax(xD,0)cx
= p ⋅ m i n ( x , D ) + s ⋅ [ m a x ( x , D ) − D ] − c ⋅ x =p⋅min(x,D)+s⋅[max(x,D)−D]−c⋅x =pmin(x,D)+s[max(x,D)D]cx
= p ⋅ m i n ( x , D ) + s ⋅ [ x + D − m i n ( x , D ) − D ] − c ⋅ x =p⋅min(x,D)+s⋅[x+D−min(x,D)−D]−c⋅x =pmin(x,D)+s[x+Dmin(x,D)D]cx
= ( p − s ) ⋅ m i n ( x , D ) − ( c − s ) ⋅ x =(p−s)⋅min(x,D)−(c−s)⋅x =(ps)min(x,D)(cs)x

拓展的利润函数求解:
π ( x , D ) π(x,D) π(x,D)
= p ⋅ m i n ( x , D ) + s ⋅ m a x ( x − D , 0 ) − r ⋅ m a x ( D − x , 0 ) − c ⋅ x =p⋅min(x,D)+s⋅max(x−D,0)-r⋅max(D-x,0)-c⋅x =pmin(x,D)+smax(xD,0)rmax(Dx,0)cx
= p ⋅ m i n ( x , D ) + s ⋅ [ m a x ( x , D ) − D ] − r ⋅ [ − m i n ( x − D , 0 ) ] − c ⋅ x =p⋅min(x,D)+s⋅[max(x,D)−D]−r⋅[-min(x-D,0)]-c⋅x =pmin(x,D)+s[max(x,D)D]r[min(xD,0)]cx
= p ⋅ m i n ( x , D ) + s ⋅ [ x + D − m i n ( x , D ) − D ] − r ⋅ [ − m i n ( x , D ) + D ] − c ⋅ x =p⋅min(x,D)+s⋅[x+D−min(x,D)−D]-r⋅[-min(x,D)+D]−c⋅x =pmin(x,D)+s[x+Dmin(x,D)D]r[min(x,D)+D]cx
= p ⋅ m i n ( x , D ) + s ⋅ [ x + D − m i n ( x , D ) − D ] − r ⋅ [ m a x ( x , D ) − x − D + D ] − c ⋅ x =p⋅min(x,D)+s⋅[x+D−min(x,D)−D]-r⋅[max(x,D)-x-D+D]−c⋅x =pmin(x,D)+s[x+Dmin(x,D)D]r[max(x,D)xD+D]cx
= ( p − s ) ⋅ m i n ( x , D ) − r ⋅ m a x ( x , D ) − ( c − s − r ) ⋅ x =(p−s)⋅min(x,D)-r⋅max(x,D)−(c−s-r)⋅x =(ps)min(x,D)rmax(x,D)(csr)x

2.2期望利润函数

原模型的期望利润函数:
E [ π ( x , D ) ] E[π(x,D)] E[π(x,D)]
= ( p − s ) ⋅ E [ m i n ( x , D ) ] − ( c − s ) ⋅ x =(p−s)⋅E[min(x,D)]−(c−s)⋅x =(ps)E[min(x,D)](cs)x
= ( p − s ) ∫ 0 ∞ m i n ( x , d ) f ( d ) d d   − ( c − s ) ⋅ x . = (p-s)\int_0^\infty min(x,d)f(d)dd\,−(c−s)⋅x. =(ps)0min(x,d)f(d)dd(cs)x.

拓展的期望利润函数:
E [ π ( x , D ) ] E[π(x,D)] E[π(x,D)]
= ( p − s ) ⋅ m i n ( x , D ) − r ⋅ m a x ( x , D ) − ( c − s − r ) ⋅ x =(p−s)⋅min(x,D)-r⋅max(x,D)−(c−s-r)⋅x =(ps)min(x,D)rmax(x,D)(csr)x
= ( p − s ) ∫ 0 ∞ m i n ( x , d ) f ( d ) d d   − r ∫ 0 ∞ m a x ( x , d ) f ( d ) d d   − ( c − s − r ) ⋅ x . = (p-s)\int_0^\infty min(x,d)f(d)dd\,-r\int_0^\infty max(x,d)f(d)dd\,−(c−s-r)⋅x. =(ps)0min(x,d)f(d)ddr0max(x,d)f(d)dd(csr)x.

2.3求解期望收益最大时的采购量

为使原函数期望收益最大,对期望收益求采购量的偏导,并令其值为 0 0 0,即

∂ E [ π ( x , D ) ] ∂ x = 0 \frac{∂ E [ π ( x , D ) ] }{∂ x} = 0 ∂x∂E[π(x,D)]​=0

∂ E [ π ( x , D ) ] ∂ x \frac{∂ E [ π ( x , D ) ] }{∂ x} ∂x∂E[π(x,D)]​

= ( p − s ) ⋅ ∂ ∂ x ( ∫ 0 ∞ m i n ⁡ ( x , d ) f ( d ) d d   ) − ( c − s ) = ( p − s ) ⋅ \frac{∂} {∂x} ( \int_0^\infty min ⁡ ( x , d ) f ( d ) d d\, ) − ( c − s ) =(ps)x(0min(x,d)f(d)dd)(cs)
= ( p − s ) ⋅ ∂ ∂ x ( ∫ 0 x d ⋅ f ( d ) d d + ∫ x ∞ x ⋅ f ( d ) d d ) − ( c − s ) = ( p − s ) ⋅ \frac{∂} {∂x} (\int_0^x d ⋅ f ( d ) d d +\int_x^\infty x ⋅ f ( d ) d d ) − ( c − s ) =(ps)x(0xdf(d)dd+xxf(d)dd)(cs)
= ( p − s ) ⋅ [ ∫ 0 x ∂ ( d ⋅ f ( d ) ) ∂ x d d + ∫ x ∞ ∂ ( x ⋅ f ( d ) ) ∂ x d d ] − ( c − s ) = ( p − s ) ⋅ [ \int_0^x \frac{∂ ( d ⋅ f ( d ) ) }{∂ x} d d +\int_x^\infty \frac{∂ ( x ⋅ f ( d ) ) }{∂ x} d d ] − ( c − s ) =(ps)[0xx(df(d))dd+xx(xf(d))dd](cs)
= ( p − s ) ⋅ ∫ x ∞ f ( d ) d d − ( c − s ) = ( p − s ) ⋅ [ 1 − F ( x ) ] − ( c − s ) = ( p − s ) ⋅ \int_x^\infty f ( d ) d d − ( c − s ) = ( p − s ) ⋅ [ 1 − F ( x ) ] − ( c − s ) =(ps)xf(d)dd(cs)=(ps)[1F(x)](cs)

显然,上式 = 0 =0 =0时, F ( x ) = p − c p − s = γ F(x)=\frac{p−c}{p−s}=γ F(x)=pspc=γ,则

x = F − 1 ( γ ) x=F^{-1}(γ) x=F1(γ)

同理,我们使拓展利润函数期望收益最大:

∂ E [ π ( x , D ) ] ∂ x = 0 \frac{∂ E [ π ( x , D ) ] }{∂ x}=0 ∂x∂E[π(x,D)]​=0

= ( p − s ) ⋅ ∂ ∂ x ( ∫ 0 ∞ m i n ⁡ ( x , d ) f ( d ) d d   ) − r ⋅ ∂ ∂ x ( ∫ 0 ∞ m a x ( x , d ) f ( d ) d d   ) − ( c − s − r ) = ( p − s ) ⋅ \frac{∂} {∂x} ( \int_0^\infty min ⁡ ( x , d ) f ( d ) d d\, ) -r⋅\frac{∂} {∂x} ( \int_0^\infty max(x,d)f(d)dd\, ) − ( c − s -r) =(ps)x(0min(x,d)f(d)dd)rx(0max(x,d)f(d)dd)(csr)
= ( p − s ) ⋅ ∂ ∂ x ( ∫ 0 x d ⋅ f ( d ) d d + ∫ x ∞ x ⋅ f ( d ) d d   ) − r ⋅ ∂ ∂ x ( ∫ 0 x x ⋅ f ( d ) d d + ∫ x ∞ d ⋅ f ( d ) d d ) − ( c − s − r ) = ( p − s ) ⋅ \frac{∂} {∂x} (\int_0^x d ⋅ f ( d ) d d +\int_x^\infty x ⋅ f ( d ) d d \, )-r ⋅ \frac{∂} {∂x} (\int_0^x x⋅ f ( d ) d d +\int_x^\infty d ⋅ f ( d ) d d ) − ( c − s-r ) =(ps)x(0xdf(d)dd+xxf(d)dd)rx(0xxf(d)dd+xdf(d)dd)(csr)
= ( p − s ) ⋅ [ ∫ 0 x ∂ ( d ⋅ f ( d ) ) ∂ x d d + ∫ x ∞ ∂ ( x ⋅ f ( d ) ) ∂ x d d ] − r ⋅ [ ∫ 0 x ∂ ( x ⋅ f ( d ) ) ∂ x d d + ∫ x ∞ ∂ ( d ⋅ f ( d ) ) ∂ x d d ] − ( c − s − r ) = ( p − s ) ⋅ [ \int_0^x \frac{∂ ( d ⋅ f ( d ) ) }{∂ x} d d +\int_x^\infty \frac{∂ ( x ⋅ f ( d ) ) }{∂ x} d d ] -r ⋅ [ \int_0^x \frac{∂ ( x ⋅ f ( d ) ) }{∂ x} d d +\int_x^\infty \frac{∂ ( d ⋅ f ( d ) ) }{∂ x} d d ] − ( c − s-r ) =(ps)[0xx(df(d))dd+xx(xf(d))dd]r[0xx(xf(d))dd+xx(df(d))dd](csr)
= ( p − s ) ⋅ ∫ x ∞ f ( d ) d d − r ⋅ ∫ 0 x f ( d ) d d − ( c − s ) = ( p − s ) ⋅ [ 1 − F ( x ) ] − r ⋅ F ( x ) − ( c − s − r ) = ( p − s ) ⋅ \int_x^\infty f ( d ) d d-r ⋅ \int_0^x f ( d ) d d− ( c − s ) = ( p − s ) ⋅ [ 1 − F ( x ) ] - r ⋅ F(x) − ( c − s-r ) =(ps)xf(d)ddr0xf(d)dd(cs)=(ps)[1F(x)]rF(x)(csr)

显然,上式 = 0 =0 =0时, F ( x ) = p − c + r p − s + r = γ F(x)=\frac{p−c+r}{p−s+r}=γ F(x)=ps+rpc+r=γ,则 x = F − 1 ( γ ) x=F^{-1}(γ) x=F1(γ)


参考博客:
报童问题(3)-深入分析
报童问题的简单解法
报童问题 (The Newsvendor Problem)文章来源地址https://www.toymoban.com/news/detail-597790.html

到了这里,关于报童模型( The Newsvendor Problem)及其拓展(加入惩罚成本)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • POJ - 2282 The Counting Problem(数位DP 计数问题)

    Given two integers a and b, we write the numbers between a and b, inclusive, in a list. Your task is to calculate the number of occurrences of each digit. For example, if a = 1024 a = 1024 a = 1024 and b = 1032 b = 1032 b = 1032 , the list will be 1024 1024 1024 1025 1025 1025 1026 1026 1026 1027 1027 1027 1028 1028 1028 1029 1029 1029 1030 1030 1030 1031 10

    2023年04月17日
    浏览(38)
  • There was a problem confirming the ssl certificate

    参考:https://blog.csdn.net/dou3516/article/details/111881479 使用pip install 某个包的时候报错ModuleNotFoundError: No module named ‘某个包’ ,错误原因是: There was a problem confirming the ssl certificate: HTTPSConnectionPool(host=‘pypi.tuna.tsinghua.edu.cn’, port=443): Max retries exceeded with url: /simple/pip/ (Caused by SSLE

    2024年02月06日
    浏览(50)
  • R语言lasso惩罚稀疏加法(相加)模型SPAM拟合非线性数据和可视化

    本文将关注R语言中的LASSO(Least Absolute Shrinkage and Selection Operator)惩罚稀疏加法模型(Sparse Additive Model,简称SPAM)。SPAM是一种用于拟合非线性数据的强大工具,它可以通过估计非线性函数的加法组件来捕捉输入变量与响应变量之间的复杂关系 ( 点击文末“阅读原文”获取完

    2024年02月11日
    浏览(39)
  • Learning From Data 中英文对照 1.THE LEARNING PROBLEM (第7页)

    为了简化感知器公式的表示法,我们将把偏差aaWp=b与其他权重合并到一个向量中[wo,1,。…,wd]“,其中T表示向量的转置,所以w是acolumn向量,我们也将x作为列向量,并将其修改为x=[o,1,…,ad]T,其中所添加的坐标ao固定在co=1。 With this convention,w Tx = d_o WwiOi, and so Equation

    2024年02月09日
    浏览(67)
  • 【车间调度】论文阅读复现——effective neighbourhood functions for the flexible job shop problem

    在复现另一篇文献An effective hybrid genetic algorithm and tabu search for flexible job shop scheduling problem的算法时,发现其中的局部搜索使用了k-insertion的邻域动作,于是找到出处:effective neighbourhood functions for the flexible job shop problem。这篇文章主要是对k-insertion的一些性质的解释与证明,我

    2024年02月03日
    浏览(59)
  • 【论文阅读】(2013)Exact algorithms for the bin packing problem with fragile objects

    论文来源:(2013)Exact algorithms for the bin packing problem with fragile objects 作者:Manuel A. Alba Martínez 等人 我们得到了一组物体,每个物体都具有重量和易碎性,以及大量没有容量的垃圾箱。 我们的目标是找到装满所有物体所需的最少垃圾箱数量,使每个垃圾箱中物体重量的总和小

    2024年02月11日
    浏览(44)
  • 群组变量选择、组惩罚group lasso套索模型预测新生儿出生体重风险因素数据和交叉验证、可视化...

    原文链接:http://tecdat.cn/?p=25158 本文介绍具有分组惩罚的线性回归、GLM和Cox回归模型的正则化路径。这包括组选择方法,如组lasso套索、组MCP和组SCAD,以及双级选择方法,如组指数lasso、组MCP ( 点击文末“阅读原文”获取完整 代码数据 )。 还提供了进行交叉验证以及拟合后

    2024年02月16日
    浏览(47)
  • ISE下载程序报错A problem may exist in the hardware configuration--解决方法(亲身踩雷)

    在用ISE下载程序的时候一直报错:iMPACT:Can not find cable, check cable setup iMPACT:A problem may exist in the hardware configuration. Check that the cable, scan chain, and power connections are intact, that the specified scan chain configuration matches the actual hardware, and that the power supply is adequate and delivering the correct vo

    2024年02月09日
    浏览(49)
  • 开源项目运行时报错A problem was found with the configuration of task ‘:app:checkDebugManifest‘

    下载开源项目后,对gradle-wrapper.properties中的gradle版本进行了升级,造成了如下问题: 1: Task failed with an exception. ----------- * What went wrong: A problem was found with the configuration of task \\\':app:checkDebugManifest\\\' (type \\\'CheckManifest\\\').   - Type \\\'com.android.build.gradle.internal.tasks.CheckManifest\\\' property \\\'manif

    2023年04月08日
    浏览(33)
  • How to fix the problem that Raspberry Pi cannot use the root user for SSH login All In One

    如何修复树莓派无法使用 root 用户进行 SSH 登录的问题 修改树莓派默认的 pi 用户名和密码后,需要使用 root 用户进行 SSH 登录; 对 pi/home 文件夹进行 备份 ,复制到新用户下 xgqfrms/home 备份后,要 删除 pi 用户, 必须切换到其他用户,毕竟 pi 用户不能自己删除自己呀!⚠️ 给

    2024年02月07日
    浏览(63)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包