【算法|动态规划No.6】leetcode63. 不同路径Ⅱ

这篇具有很好参考价值的文章主要介绍了【算法|动态规划No.6】leetcode63. 不同路径Ⅱ。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

个人主页:平行线也会相交
欢迎 点赞👍 收藏✨ 留言✉ 加关注💓本文由 平行线也会相交 原创
收录于专栏【手撕算法系列专栏】【LeetCode】
🍔本专栏旨在提高自己算法能力的同时,记录一下自己的学习过程,希望对大家有所帮助
🍓希望我们一起努力、成长,共同进步。
【算法|动态规划No.6】leetcode63. 不同路径Ⅱ,手撕算法系列专栏,动态规划,算法

点击直接跳转到该题目

1️⃣题目描述

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish”)。

现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

网格中的障碍物和空位置分别用 1 和 0 来表示。

示例1:

【算法|动态规划No.6】leetcode63. 不同路径Ⅱ,手撕算法系列专栏,动态规划,算法

输入:obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]
输出:2
解释:3x3 网格的正中间有一个障碍物。 从左上角到右下角一共有 2 条不同的路径:

  1. 向右 -> 向右 -> 向下 -> 向下
  2. 向下 -> 向下 -> 向右 -> 向右

示例2:

【算法|动态规划No.6】leetcode63. 不同路径Ⅱ,手撕算法系列专栏,动态规划,算法
输入:obstacleGrid = [[0,1],[0,0]]
输出:1

【算法|动态规划No.6】leetcode63. 不同路径Ⅱ,手撕算法系列专栏,动态规划,算法

2️⃣题目解析

1.状态表示:dp[i][j]表示到达i,j位置时一共有多少种方法。
2.状态转移方程:分为两种情况:
情况一:有障碍物,当前位置dp值为0。
情况二:无障碍物,当前位置dp[i][j] = dp[i-1][j] + dp[i][j-1]
3.初始化:初始化时注意下标的映射关系,同时为了填表正确,在初始化时必须该dp[1][0]或者dp[0][1]初始化为1
4.填表顺序,从上往下填写每一行,每一行从左往右。
5.返回值:返回dp[m][n]。

这里需要注意的时,创建dp表的时候,dp表的规模要在比之前多一行多一列。文章来源地址https://www.toymoban.com/news/detail-597807.html

3️⃣解题代码

class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& ob) {
        //创建dp表
        //初始化
        //填表
        //返回值

        int m = ob.size(), n = ob[0].size();
        vector<vector<int>> dp(m+1,vector<int>(n+1));
        dp[1][0] = 1;
        for(int i = 1; i <= m; i++)
        {
            for(int j = 1; j <= n; j++)
            {
                if(ob[i-1][j-1] == 0)
                    dp[i][j] = dp[i-1][j] + dp[i][j-1];

            }
        }
        return dp[m][n];
    }
};

到了这里,关于【算法|动态规划No.6】leetcode63. 不同路径Ⅱ的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 算法D39 | 动态规划2 | 62.不同路径 63. 不同路径 II

    今天开始逐渐有 dp的感觉了,题目不多,就两个 不同路径,可以好好研究一下 62.不同路径  本题大家掌握动态规划的方法就可以。 数论方法 有点非主流,很难想到。  代码随想录 视频讲解: 动态规划中如何初始化很重要!| LeetCode:62.不同路径_哔哩哔哩_bilibili 这个题看

    2024年04月10日
    浏览(45)
  • 【手撕算法|动态规划系列No.4】leetcode91. 解码方法

    个人主页:平行线也会相交 欢迎 点赞👍 收藏✨ 留言✉ 加关注💓本文由 平行线也会相交 原创 收录于专栏【手撕算法系列专栏】【LeetCode】 🍔本专栏旨在提高自己算法能力的同时,记录一下自己的学习过程,希望对大家有所帮助 🍓希望我们一起努力、成长,共同进步。

    2024年02月12日
    浏览(41)
  • 力扣:63. 不同路径 II(动态规划)

    一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。 机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish”)。 现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径? 网格中的障碍

    2024年01月18日
    浏览(53)
  • 算法刷刷刷|动态规划篇|509.斐波那契数| 70.爬楼梯| 746.使用最小花费爬楼梯| 62.不同路径| 63不同路径2| 343.正数拆分 | 96.不同的二叉搜索树

    509. 斐波那契数 斐波那契数 (通常用 F(n) 表示)形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是: F(0) = 0,F(1) = 1 F(n) = F(n - 1) + F(n - 2),其中 n 1 给定 n ,请计算 F(n) 。 70.爬楼梯 746.使用最小花费爬楼梯 给你一个整数

    2023年04月23日
    浏览(57)
  • 【手撕算法|动态规划系列No.3】leetcode746. 使用最小花费爬楼梯

    个人主页:平行线也会相交 欢迎 点赞👍 收藏✨ 留言✉ 加关注💓本文由 平行线也会相交 原创 收录于专栏【手撕算法系列专栏】【LeetCode】 🍔本专栏旨在提高自己算法能力的同时,记录一下自己的学习过程,希望对大家有所帮助 🍓希望我们一起努力、成长,共同进步。

    2024年02月12日
    浏览(64)
  • 随想录Day39--动态规划: 62.不同路径 , 63. 不同路径 II

    今天的路劲问题,思想和昨天的爬楼梯一样,主要还是找到你这个位置是怎么来的,到达dp[i][j]的方法由到达dp[i - 1][j]的方法再加上到达dp[i][j - 1]的方法和。在初始化时,当i=0或者j=0时,到达他们的只有一条路劲,就是直走,所以对它进行初始化。 63. 不同路径 II 加了一个障

    2024年02月03日
    浏览(59)
  • 【手撕算法|动态规划系列No.2】leetcode面试题 08.01. 三步问题

    个人主页:平行线也会相交 欢迎 点赞👍 收藏✨ 留言✉ 加关注💓本文由 平行线也会相交 原创 收录于专栏【手撕算法系列专栏】【LeetCode】 🍔本专栏旨在提高自己算法能力的同时,记录一下自己的学习过程,希望对大家有所帮助 🍓希望我们一起努力、成长,共同进步。

    2024年02月12日
    浏览(64)
  • 【手撕算法|动态规划系列No.1】leetcode1137. 第 N 个泰波那契数

    个人主页:平行线也会相交 欢迎 点赞👍 收藏✨ 留言✉ 加关注💓本文由 平行线也会相交 原创 收录于专栏【手撕算法系列专栏】【LeetCode】 🍔本专栏旨在提高自己算法能力的同时,记录一下自己的学习过程,希望对大家有所帮助 🍓希望我们一起努力、成长,共同进步。

    2024年02月11日
    浏览(55)
  • 【算法|动态规划No.17】leetcode64. 最小路径和

    个人主页:兜里有颗棉花糖 欢迎 点赞👍 收藏✨ 留言✉ 加关注💓本文由 兜里有颗棉花糖 原创 收录于专栏【手撕算法系列专栏】【LeetCode】 🍔本专栏旨在提高自己算法能力的同时,记录一下自己的学习过程,希望对大家有所帮助 🍓希望我们一起努力、成长,共同进步。

    2024年02月07日
    浏览(49)
  • 我在代码随想录|写代码Day33 | 动态规划| 路径问题| 62.不同路径,63. 不同路径 II,343. 整数拆分

    🔥博客介绍`: 27dCnc 🎥系列专栏: 数据结构与算法 算法入门 C++项目 🎥 当前专栏: 算法入门 专题 : 数据结构帮助小白快速入门算法 👍👍👍👍👍👍👍👍👍👍👍👍 ☆*: .。. o(≧▽≦)o .。.:*☆ ❤️感谢大家点赞👍收藏⭐评论✍️ 今日学习打卡 代码随想录 - 动态规划

    2024年03月11日
    浏览(63)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包