教你python破解滑块验证码!记得收藏!

这篇具有很好参考价值的文章主要介绍了教你python破解滑块验证码!记得收藏!。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


前言

有小伙伴们私信反馈说,在web自动化的过程中,经常会被登录的验证码给卡住,不知道如何去通过验证码的验证。今天专门给大家来聊聊验证码的问题,一般的情况下遇到验证码我们可以都可以找开发去帮忙解决,关闭验证码!我们自己有没有办法来处理这些验证码的问题呢?答案当然是有的,常见的验证码一般分为两类,一类是图文验证码,一类是滑块验证码!

python 滑块验证码,Python编程,爬虫,编程,python,开发语言,编程,爬虫
关于图文识别的验证码,之前已经出了相关的识别解决方案,今天就不做过多的介绍了,有兴趣的小伙伴可以 领取配套的视频资料 。今天我们主要来聊聊滑动验证码如何去识别破解。

→→→先领资料,再学习←←←

一、滑动验证破解思路

关于滑动验证码破解的思路大体上来讲就是以下两个步骤:

  1. 获取滑块滑动的距离

  2. 模拟拖动滑块,通过验证。

看起来是很难,实际一点都不简单。 但是获取滑块滑动的距离,大多数小伙伴没有思路,不知道怎么去获取。其实要获取下来也不难,关于这种滑动的验证码,滑块和缺口背景都是分别是一张独立的图片,我们可以把这两张图片,下载下来借助于图像识别的技术,去识别缺口在背景图中的位置,然后减去滑块当前所在位置,就可以得出需要滑动的距离。这个时候很多小伙伴会想图像识别技术我不会啊,不会没有关系,后面会给到大家一个封装好的滑块识别模块,只要你传入滑块和缺口背景图的元素节点就能计算出滑块的缺口位置。

二、案例讲解

话不多说,我们先来看一个案例,这边用到了一个我自己封装的滑动距离识别的模块slideVerfication,有需要的小伙伴可以文末名片处获取。登录案例实现步骤如下:

  1. 创建一个driver对象,访问qq登录页面
  2. 输入账号密码
  3. 点击登录
  4. 模拟滑动验证

三、代码实现

import time
from selenium import webdriver
from slideVerfication import SlideVerificationCode
​
# 1、创建一个driver对象,访问qq登录页面
browser = webdriver.Chrome()
browser.get("https://qzone.qq.com/")
​
# 2、输入账号密码
# 2.0 点击切换到登录的iframe
browser.switch_to.frame('login_frame')
# 2.1 点击账号密码登录
browser.find_element_by_id('switcher_plogin').click()
# 2.2定位账号输入框,输入账号
browser.find_element_by_id("u").send_keys("123292678")
# 2.3定位密码输入输入密码
browser.find_element_by_id("p").send_keys("PYTHON01")
# 3、点击登录
browser.find_element_by_id('login_button').click()
time.sleep(3)
​
# 4、模拟滑动验证
# 4.1切换到滑动验证码的iframe中
tcaptcha = browser.find_element_by_id("tcaptcha_iframe")
browser.switch_to.frame(tcaptcha)
# 4.2 获取滑动相关的元素
# 选择拖动滑块的节点
slide_element = browser.find_element_by_id('tcaptcha_drag_thumb')
# 获取滑块图片的节点
slideBlock_ele = browser.find_element_by_id('slideBlock')
# 获取缺口背景图片节点
slideBg = browser.find_element_by_id('slideBg')
# 4.3计算滑动距离
sc = SlideVerificationCode(save_image=True)
distance = sc.get_element_slide_distance(slideBlock_ele,slideBg)
# 滑动距离误差校正,滑动距离*图片在网页上显示的缩放比-滑块相对的初始位置
distance = distance*(280/680) - 22
print("校正后的滑动距离",distance)
# 4.4、进行滑动
sc.slide_verification(browser,slide_element,distance=100)

python 滑块验证码,Python编程,爬虫,编程,python,开发语言,编程,爬虫
关于滑动验证码的识别问题就这样解决了,那么接下来给大家来讲讲封装的slideVerfication这个模块的识别原理,其实关于这个模块图像识别,也是借助了第三方的图像处理模块来进行识别的,python中有很多现成的用来处理图片的库,这边我使用的是opencv-python来进行识别的。slideVerfication模块上面用到的两个方法的部分参考代码如下:

def get_element_slide_distance(self, slider_ele, background_ele, correct=0):

根据传入滑块,和背景的节点,计算滑块的距离该方法只能计算 滑块和背景图都是一张完整图片的场景,如果背景图是通过多张小图拼接起来的背景图,该方法不适用,请使用get_image_slide_distance这个方法

:param slider_ele: 滑块图片的节点
:type slider_ele: WebElement
:param background_ele: 背景图的节点
:type background_ele:WebElement
:param correct:滑块缺口截图的修正值,默认为0,调试截图是否正确的情况下才会用
:type: int
:return: 背景图缺口位置的X轴坐标位置(缺口图片左边界位置)
# 获取验证码的图片
slider_url = slider_ele.get_attribute("src")
background_url = background_ele.get_attribute("src")
# 下载验证码背景图,滑动图片
slider = "slider.jpg"
background = "background.jpg"
self.onload_save_img(slider_url, slider)
self.onload_save_img(background_url, background)
# 读取进行色度图片,转换为numpy中的数组类型数据,
slider_pic = cv2.imread(slider, 0)
background_pic = cv2.imread(background, 0)
# 获取缺口图数组的形状 -->缺口图的宽和高
width, height = slider_pic.shape[::-1]
# 将处理之后的图片另存
slider01 = "slider01.jpg"
background_01 = "background01.jpg"
cv2.imwrite(background_01, background_pic)
cv2.imwrite(slider01, slider_pic)
# 读取另存的滑块图
slider_pic = cv2.imread(slider01)
# 进行色彩转换
slider_pic = cv2.cvtColor(slider_pic, cv2.COLOR_BGR2GRAY)
# 获取色差的绝对值
slider_pic = abs(255 - slider_pic)
# 保存图片
cv2.imwrite(slider01, slider_pic)
# 读取滑块
slider_pic = cv2.imread(slider01)
# 读取背景图
background_pic = cv2.imread(background_01)
# 比较两张图的重叠区域
result = cv2.matchTemplate(slider_pic, background_pic, cv2.TM_CCOEFF_NORMED)
# 获取图片的缺口位置
top, left = np.unravel_index(result.argmax(), result.shape)
# 背景图中的图片缺口坐标位置
print("当前滑块的缺口位置:", (left, top, left + width, top + height))
return left
def slide_verification(self, driver, slide_element, distance):

滑动滑块进行验证

:param driver: driver对象
:type driver:webdriver.Chrome
:param slide_element: 滑块的元组
:type slider_ele: WebElement
:param distance: 滑动的距离
:type: int
:return:
# 获取滑动前页面的url地址
start_url = driver.current_url
print("需要滑动的距离为:", distance)
# 根据滑动距离生成滑动轨迹
locus = self.get_slide_locus(distance)
print("生成的滑动轨迹为:{},轨迹的距离之和为{}".format(locus, distance))
# 按下鼠标左键
ActionChains(driver).click_and_hold(slide_element).perform()
time.sleep(0.5)
# 遍历轨迹进行滑动
for loc in locus:
time.sleep(0.01)
ActionChains(driver).move_by_offset(loc, random.randint(-5, 5)).perform()
ActionChains(driver).context_click(slide_element)
# 释放鼠标
ActionChains(driver).release(on_element=slide_element).perform()

好了关于滑动验证码识别就给大家分享到这里了,上述解决方案也有对应的讲解视频,有需要的小伙伴下方名片获取!

↓ ↓ ↓ 加下方名片找我,直接拿源码还有案例 ↓ ↓ ↓

python 滑块验证码,Python编程,爬虫,编程,python,开发语言,编程,爬虫文章来源地址https://www.toymoban.com/news/detail-598075.html

到了这里,关于教你python破解滑块验证码!记得收藏!的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • selenium破解滑块验证码自动查询+获取后续表单数据

    一、装载好chromedriver之后,运行命令行 \\\"chrome.exe\\\"(路径) --remote-debugging-port=9222 打开谷歌浏览器。 二、使用selenium打开网页:  三、获取输入框批量输入数据,并破解验证码: 使用 driver.find_element_by_xpath 获取element时,xpath可通过浏览器打开网站,使用检查功能,找到element所

    2024年02月12日
    浏览(62)
  • python编程实战(二):一文教你生成随机验证码!大小写字母与数字组合,位数可以控制

    验证码验证,是常见的安全验证的一种方式,可以用来杜绝脚本和机器人操作等等; 除了本文介绍的简单的验证码之外,还有拼图验证、文字顺序验证等常见的验证方式 毕竟一位就是 26 + 26 +10 = 62种 4位验证码那就有 62 * 62 * 62 * 62 = 14776336 种组合! 6位就更不用说了~ 生活中我

    2023年04月11日
    浏览(82)
  • Python 阿里云盾滑块验证

    tabletrtd bgcolor=orange本文仅供学习交流使用,如侵立删!/td/tr/table 操作环境 win10 、 mac Python3.9 selenium、pyautogui 分析 最近在做中国庭审公开网数据分析的时候发现每次打开一个新的页面都会触发滑块验证,就长下面这个样子 本以为使用selenium定位到滑块元素拖动即可,满心欢

    2024年02月11日
    浏览(47)
  • python+selenium尝试处理滑块验证

     效果如图:   处理思路: 1.打开滑动验证页面,这个用selenium一步一步走过去 2.将滑动验证码的整个图片保存下来 3.对图片的像素点进行分析,发现拼图处像素特征如下:   1).阴影起点处rgb的第一个值为0   2).阴影处的rgb三个值相加大部分小于某个临界值(minPix=400)   3).拼图阴影大

    2024年02月15日
    浏览(51)
  • python 使用ddddocr库实现滑块验证码滑动验证

    使用ddddocr识别 该算法识别准确率为95%左右,测试三轮,每轮测试100次 使用cv2识别 该算法识别准确率为95%左右,测试三轮,每轮测试100次 构造轨迹库 图片长度为300,理论上就300种轨迹,实际上应该是200+种,还要减去滑块图的长度80 手动滑他个几百次,并把距离和轨迹记录下

    2024年01月21日
    浏览(57)
  • Python如何解决“滑块验证码”登录识别(3)

    前言 本文是该专栏的第24篇,后面会持续分享python的干货知识,记得关注。 做爬虫项目的时候,总是会遇到我们的冤家老朋友——验证码(图文验证码,点选验证码,滑块验证码)等。前面我有介绍过图文验证码和点选验证码,针对验证码这块, 后面我会持续更新这些 验证码

    2023年04月08日
    浏览(37)
  • python爬虫之pyppeteer突破滑块验证

    由于Selenium流行已久,现在稍微有点反爬的网站都会对selenium和webdriver进行识别,网站只需要在前端js添加一下判断脚本,很容易就可以判断出是真人访问还是webdriver。 虽然也可以通过中间代理的方式进行js注入屏蔽webdriver检测,但是webdriver对浏览器的模拟操作(输入、点击等

    2024年01月25日
    浏览(40)
  • python+selenium绕过滑块验证,实现自动登录

    实现taobao自动化登录,当用webdriver打开淘宝时,滑块验证一直失败,手动滑都会失败。因为淘宝会检测window.navigator.webdriver,控件检测到你是selenium进入,所以就会弹出滑块验证。只需要绕过检测就能实现自动登录 验证了两种方法可以跳过: 第一种是给浏览器加启动参数,开

    2024年02月12日
    浏览(52)
  • 抖音、云图、星图、巨量等滑块验证(python+selenium)

    抖音、云图、星图、巨量等滑块通用 2023年3月份亲测好用,仅用于学习测试。

    2024年02月10日
    浏览(57)
  • python 识别图片验证码/滑块验证码准确率极高的 ddddocr 库

    验证码的种类有很多,它是常用的一种反爬手段,包括:图片验证码,滑块验证码,等一些常见的验证码场景。 识别验证码的python 库有很多,用起来也并不简单,这里推荐一个简单实用的识别验证码的库 ddddocr (带带弟弟ocr)库. python 版本要求小于等于python3.9 版本 pip 安装 下

    2023年04月08日
    浏览(42)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包