「深度学习之优化算法」(十五)混合蛙跳算法

这篇具有很好参考价值的文章主要介绍了「深度学习之优化算法」(十五)混合蛙跳算法。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1. 混合蛙跳算法简介

(以下描述,均不是学术用语,仅供大家快乐的阅读)
  混合蛙跳算法(Shuffled Frog Leaping Algorithm)是根据青蛙在石块上觅食时的种群分布变化而提出的算法。算法提出于2003年,时间有点久远,但相关的论文并不是特别多,仍有较大的研究和改进空间。
  混合蛙跳算法中,每个青蛙的位置代表了一个可行解。青蛙所在的池塘中有数块石块,每一代,青蛙们会被分配到石块上。在这一代中,只有石块上位置最差的青蛙会跳动。该青蛙首先会向着同一个石块上的最优位置的青蛙跳动,如果新的位置比原位置差则向则全局最优位置跳动,若该位置仍旧比原位置差则在解空间内随机跳动一次。可以看出每只跳动青蛙在每代中至少跳动一次,至多跳动三次,但由于每次跳动的青蛙数量等于石块数,故当石块数<青蛙数/3时,每代总跳动次数小于青蛙总数。
  (查找文献追根溯源的时候看到了一个有趣的现象,原始的提出论文提出于2000年(Shuffled frog leaping algorithm:a memetic meta-heuristic for combinatorial optimization.)但是到2006年才出版,而2003年的论文(Optimization of Water Distribution Network Design Using the Shuffled Frog Leaping Algorithm)引用了2000年的原始论文,并标注为出版中。到了2006年出版时,原始论文引用了2003年发表的那篇论文,即这两篇论文相互引用,真是奇妙。估计是原始论文被拒了后又修改了结果到2006年才发表。)

2. 算法流程

这次的主角就是青文章来源地址https://www.toymoban.com/news/detail-598642.html

到了这里,关于「深度学习之优化算法」(十五)混合蛙跳算法的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 机器学习笔记之优化算法(十五)Baillon Haddad Theorem简单认识

    本节将简单认识 Baillon Haddad Theorem text{Baillon Haddad Theorem} Baillon Haddad Theorem ( 白老爹定理 ),并提供相关证明。 如果 函数 f ( ⋅ ) f(cdot) f ( ⋅ ) 在其定义域内 可微 ,并且是 凸函数 ,则存在如下 等价 条件 : 以下几个条件之间相互等价。 关于 f ( ⋅ ) f(cdot) f ( ⋅ ) 的 梯度

    2024年02月12日
    浏览(57)
  • 【动手学深度学习】深入浅出深度学习之RMSProp算法的设计与实现

    目录 🌞一、实验目的 🌞二、实验准备 🌞三、实验内容 🌼1. 认识RMSProp算法 🌼2. 在optimizer_compare_naive.py中加入RMSProp 🌼3. 在optimizer_compare_mnist.py中加入RMSProp 🌼4. 问题的解决 🌞四、实验心得 深入学习RMSProp算法的原理和工作机制; 根据RMSProp算法的原理,设计并实现一个

    2024年04月10日
    浏览(64)
  • 人工智能-机器学习-深度学习-分类与算法梳理

    目前人工智能的概念层出不穷,容易搞混,理清脉络,有益新知识入脑。 为便于梳理,本文只有提纲,且笔者准备仓促,敬请勘误,不甚感激。 符号主义(Symbolists) 基于逻辑推理的智能模拟方法。最喜欢的算法是:规则和决策树。符号主义的代表性成果有启发式程序、专家系

    2024年02月03日
    浏览(91)
  • 走进人工智能|深度学习 算法的创世纪

    前言: 深度学习通过训练深层神经网络模型,可以自动学习和提取数据的特征,包括更准确的图像识别、自然语言处理、医学诊断等方面的应用。 深度学习是一种机器学习方法,其目标是通过模拟人脑神经网络的结构和功能,让机器能够从大量的数据中自动学习和提取特征

    2024年02月09日
    浏览(88)
  • 回归预测 | Matlab实现RIME-HKELM霜冰算法优化混合核极限学习机多变量回归预测

    效果一览 基本介绍 1.Matlab实现RIME-HKELM霜冰算法优化混合核极限学习机多变量回归预测(完整源码和数据) 2.运行环境为Matlab2021b; 3.excel数据集,输入多个特征,输出单个变量,多变量回归预测预测,main.m为主程序,运行即可,所有文件放在一个文件夹; 4.命令窗口输出R2、

    2024年01月24日
    浏览(54)
  • 毕业设计:基于深度学习的图像去噪算法 人工智能

    目录 前言 项目背景 设计思路 数据集 模型训练 更多帮助     📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课题是研究生级别难度的,对本科同学

    2024年02月19日
    浏览(51)
  • 人工智能-深度学习之延后初始化

    到目前为止,我们忽略了建立网络时需要做的以下这些事情: 我们定义了网络架构,但没有指定输入维度。 我们添加层时没有指定前一层的输出维度。 我们在初始化参数时,甚至没有足够的信息来确定模型应该包含多少参数。 有些读者可能会对我们的代码能运行感到惊讶。

    2024年02月05日
    浏览(39)
  • 鱼类识别Python+深度学习人工智能+TensorFlow+卷积神经网络算法

    鱼类识别系统。使用Python作为主要编程语言开发,通过收集常见的30种鱼类(‘墨鱼’, ‘多宝鱼’, ‘带鱼’, ‘石斑鱼’, ‘秋刀鱼’, ‘章鱼’, ‘红鱼’, ‘罗非鱼’, ‘胖头鱼’, ‘草鱼’, ‘银鱼’, ‘青鱼’, ‘马头鱼’, ‘鱿鱼’, ‘鲇鱼’, ‘鲈鱼’, ‘鲍鱼’, ‘鲑

    2024年02月02日
    浏览(100)
  • 89 | Python人工智能篇 —— 深度学习算法 Keras 实现 MNIST分类

    本教程将带您深入探索Keras,一个开源的深度学习框架,用于构建人工神经网络模型。我们将一步步引导您掌握Keras的核心概念和基本用法,学习如何构建和训练深度学习模型,以及如何将其应用于实际问题中。

    2024年02月13日
    浏览(58)
  • 多维时序 | Matlab实现RIME-HKELM霜冰算法优化混合核极限学习机多变量时间序列预测

    效果一览 基本介绍 1.Matlab实现RIME-HKELM霜冰算法优化混合核极限学习机多变量时间序列预测(完整源码和数据) 2.运行环境为Matlab2021b; 3.excel数据集,输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测,main.m为主程序,运行即可,所有文件放在一个文件

    2024年01月17日
    浏览(50)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包