Bring Your Data!Self- supervised Evolution of Large Language Models

这篇具有很好参考价值的文章主要介绍了Bring Your Data!Self- supervised Evolution of Large Language Models。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

Introduction

这篇论文提出了一种自监督的评估方式来衡量大型语言模型的能力和局限性。常规的基于数据集的评估方式存在一些缺点:

  1. 需要不断新建数据集。
  2. 存在数据集和模型训练数据交叉的问题,影响评估结果。
  3. 难以评估模型在实际部署中的表现。为了弥补这些缺点,论文提出了自监督评估方法。

主要思想是:对输入文本做一些简单的转换(如添加否定词、颠倒词序等),然后比较原始文本和转换文本模型的输出(或概率分布),通过模型对这些转换的不变性或敏感度来评估它的能力。

Method

Bring Your Data!Self- supervised Evolution of Large Language Models,语言模型,人工智能,自然语言处理

自监督评估的主要思想是:

基于输入文本做某种简单的转换,形成一对原始文本和变换后的文本,将这对文本送入模型,分析模型对这种转换的不变性或敏感度,将多个这样的文本对的数据聚合,形成一个总体上的不变性或敏感度分数。

具体过程:

  1. 对数据集(如维基百科)构建输入文本x和变换后的文本x’对。
  2. 将这对文本送入模型f,获取模型输出(可以是概率分布、困惑值、文本等)。
  3. 根据输出f(x)和f(x’)使用一个相似度度量M量化它们的相似性。
  4. 将相似度度量在整个数据集上聚合,使用聚合函数A计算最终的不变性/敏感度分数。
    Bring Your Data!Self- supervised Evolution of Large Language Models,语言模型,人工智能,自然语言处理

论文提出了以下变换来评估模型:

  1. 添加否定词,测量模型对否定句子模型分布的变化,来反应模型的世界知识。

  2. 添加有毒引发词,分析模型生成的文本来测量模型对有毒文本的敏感度。

  3. 替换一些上下文句子,测量模型对最后一句话的概率分布变化,来反应模型对长距离上下文的敏感度。

  4. 颠倒词序,测量模型对概率分布的变化来反应模型对词序的敏感度。

  5. 将输入文本拆分后重新组合,测量模型对这样的分词变化的鲁棒性。

参考

https://arxiv.org/pdf/2306.13651.pdf文章来源地址https://www.toymoban.com/news/detail-599487.html

到了这里,关于Bring Your Data!Self- supervised Evolution of Large Language Models的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 论文阅读 A Survey of Large Language Models 3

    为了检验LLM的有效性和优越性,大量的任务和基准被用来进行实证评估和分析。我们首先介绍了LLM语言生成和理解的三种基本评估任务,然后介绍了LLM具有更复杂设置或目标的几个高级任务,最后讨论了现有的基准和实证分析。 在这一部分中,我们主要关注LLM的三种评估任务

    2024年02月13日
    浏览(47)
  • A Survey on Evaluation of Large Language Models

    这是LLM相关的系列文章,针对《A Survey on Evaluation of Large Language Models》的翻译。 大型语言模型(LLM)由于其在各种应用中前所未有的性能,在学术界和工业界都越来越受欢迎。随着LLM在研究和日常使用中继续发挥重要作用,其评估变得越来越重要,不仅在任务层面,而且在社

    2024年02月13日
    浏览(42)
  • 大模型 LLM 综述, A Survey of Large Language Models

    一般认为NLP领域的大模型=10 Billion参数(也有人认为是6B、7B, 工业界用, 开始展现涌现能力); 经典大模型有GPT-3、BLOOM、Flan-T5、GPT-NeoX、OPT、GLM-130B、PaLM、LaMDA、LLaMA等; 大模型时间线, 图来自A Survey of Large Language Models,下同。 2.1 涌现 涌现, emerge(abilities), 即一般指在大模型中出现

    2024年02月08日
    浏览(59)
  • YaRN: Efficient Context Window Extension of Large Language Models

    本文是LLM系列文章,针对《YaRN: Efficient Context Window Extension of Large Language Models》的翻译。 旋转位置嵌入(RoPE)已被证明可以在基于Transformer的语言模型中有效地编码位置信息。然而,这些模型无法推广到它们所训练的序列长度。我们提出了YaRN(另一种RoPE扩展方法),这是一

    2024年02月09日
    浏览(43)
  • 【论文阅读】LoRA: Low-Rank Adaptation of Large Language Models

    code:GitHub - microsoft/LoRA: Code for loralib, an implementation of \\\"LoRA: Low-Rank Adaptation of Large Language Models\\\" 做法: 把预训练LLMs里面的参数权重给 冻结 ; 向transformer架构中的每一层, 注入 可训练的 rank decomposition matrices-(低)秩分解矩阵,从而可以显著地减少下游任务所需要的可训练参

    2024年02月03日
    浏览(50)
  • Tree of Thoughts: Deliberate Problem Solving with Large Language Models

    本文是LLM系列的文章,针对《Tree of Thoughts: Deliberate Problem Solving with Large Language Models》的翻译。 语言模型越来越多地被部署用于解决各种任务中的一般问题,但在推理过程中仍然局限于token级别的从左到右的决策过程。这意味着他们可能无法完成需要探索、战略前瞻或初始决

    2024年02月11日
    浏览(51)
  • 大型语言模型综述,非常详细,格局打开!A Survey of Large Language Models

    返回论文和资料目录 论文地址 项目地址 讲得通俗易懂,且格局拉满!基本覆盖了自ChatGPT以来的AI比较火的事件,还多次提到强人工智能AGI(人工通用智能)。对近几年的大型语言模型( Large Language Models)进行了详细介绍。非常建议感兴趣大模型和强人工智能的读者阅读!!

    2024年02月08日
    浏览(55)
  • Secrets of RLHF in Large Language Models Part I: PPO

    本文是LLM系列文章,针对《Secrets of RLHF in Large Language Models Part I: PPO》的翻译。 大型语言模型(LLM)为通用人工智能的发展制定了蓝图。它的主要目标是作为一个以人为本(乐于助人、诚实无害)的助手。与人类保持一致具有至关重要的意义,人类反馈强化学习(RLHF)成为支

    2024年02月07日
    浏览(137)
  • 论文《LoRA: Low-Rank Adaptation of Large Language Models》阅读

    今天带来的是由微软Edward Hu等人完成并发表在ICLR 2022上的论文《LoRA: Low-Rank Adaptation of Large Language Models》,论文提出了大模型 tuning 框架 LoRA ( Lo w- R ank A daptation)。 论文地址:https://openreview.net/pdf?id=nZeVKeeFYf9 附录下载地址:https://openreview.net/attachment?id=nZeVKeeFYf9name=supplementa

    2024年02月11日
    浏览(54)
  • LLM:LoRA: Low-Rank Adaptation of Large Language Models

    随着模型规模的不断扩大,微调模型的所有参数(所谓full fine-tuning)的可行性变得越来越低。以GPT-3的175B参数为例,每增加一个新领域就需要完整微调一个新模型,代价和成本很高。 为解决微调大规模语言模型到不同领域和任务的挑战,已有多种方案,比如部分微调、使用

    2024年02月07日
    浏览(44)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包