Redis缓存更新策略以及常见缓存问题

这篇具有很好参考价值的文章主要介绍了Redis缓存更新策略以及常见缓存问题。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

redis 缓存,Redis,缓存,redis,spring


一、什么是缓存?

缓存就是数据交换的缓冲区(Cache),是存储数据的临时地方,一般读写性能较好,常见缓存:
redis 缓存,Redis,缓存,redis,spring
Web应用中缓存有什么作用呢?

  • 降低后端负载
  • 提高读写效率,降低响应时间

缓存的成本:

  • 数据的一致性成本
  • 代码维护成本
  • 运维成本

二、添加Redis缓存

缓存作用模型:
redis 缓存,Redis,缓存,redis,spring
给一段Redis作为缓存的具体案例代码:

public Shop queryWithPassThrough(Long id) {
        // 1. 从Redis 查询商铺缓存
        String shopJson = stringRedisTemplate.opsForValue().get("cache:shop:" + id);
        // 2. 判断是否存在
        if (StrUtil.isNotBlank(shopJson)) {
            // 存在返回
            Shop shop = JSONUtil.toBean(shopJson,Shop.class);
            return shop;
        }
        // 不存在,根据id查询数据库
        Shop shop = getById(id);
        // 数据库中不存在 直接返回
        if(shop == null) {
            return null;
        }
        // 存在 写入redis
        stringRedisTemplate.opsForValue().set("cache:shop:" + id,JSONUtil.toJsonStr(shop));
        return shop;
    }

三、缓存更新策略

我们在使用Redis作为缓存,可以大大降低数据库的负载压力,但是也会带来缓存一致性问题(Redis数据与数据库数据不一样),以下为三种常见的缓存更新策略:

内存淘汰 超时剔除 主动更新
说明 不用自己维护,利用Redis的内存淘汰机制,当内存不足时自动淘汰部分数据,下次查询时更新缓存 给缓存添加TTL时间,到期后自动删除缓存,下次查询时更新缓存 编写业务逻辑,再修改数据库时,更新缓存
一致性 一般
维护成本

业务场景:

  • 低一致性需求:使用内存淘汰机制
  • 高一致性需求:主动更新,并以超时剔除作为兜底方案

主动更新策略:

  1. Cache Aside Pattern:由缓存的调用者,在更新数据库时同时更新缓存
  2. Read/Write Through Pattern:缓存与数据库整合为一个服务,由服务来维护一致性。调用者调用该服务,无需关心缓存一致性问题
  3. Write Behind Caching Pattern:调用者只操作缓存,用其他线程异步将缓存持久化到数据库,保证最终一致

综合比较一般使用的还是一种Cache Aside Pattern策略,但是在操作缓存和数据库时有三个问题需要考虑:
1.删除缓存还是更新缓存?
更新缓存:每次更新数据库都更新缓存,无效写操作较多
删除缓存:更新数据库时让缓存失效,查询时再更新缓存(选择的方案)

2.如何保证缓存与数据库的操作的同时成功或失败?
单体系统,将缓存与数据库操作放在一个事务
分布式系统,利用TTC等分布式事务方案

3.先操作缓存还是先操作数据库?
其实两种方案都可以,哪一个更优呢?我们来对比一下:
1.先删除缓存在操作数据库:
redis 缓存,Redis,缓存,redis,spring
这种情况,缓存和数据库都是20,一致性没有问题
redis 缓存,Redis,缓存,redis,spring
但是上述情况就产生了数据不一致情况,上述场景的情况发生的概率还是比较高的,因为更新数据库是相对较慢的,而查询缓存,写缓存速度是相对较快的就会出现上述情况

2.先操作数据库,再删除缓存
redis 缓存,Redis,缓存,redis,spring
上述这种情况是不存在一致性问题的
redis 缓存,Redis,缓存,redis,spring
上述这种情况是存在一致性问题,但需要几个条件,线程一恰好缓存失效,并且在查询完数据库与写入缓存之间完成更慢的更新数据库与删除缓存操作,这种可能性是更低的

缓存更新策略的最佳实践方案:
低一致性需求:使用Redis自带的内存淘汰机制

高一致性需求:主动更新,并以超时剔除作为兜底方案
读操作:

  • 缓存命中之间返回
  • 缓存未命中则查询数据库,并写入缓存,并设定超时时间

写操作:

  • 先写数据库,然后再删除缓存
  • 要确保数据库与缓存操作的原子性

写操作:

	@Override
    @Transactional
    public Result update(Shop shop) {
        Long id = shop.getId();
        if(id == null) {
            return Result.fail("店铺id不能为空");
        }
        // 1. 更新数据库
        updateById(shop);
        // 2. 删除缓存
        stringRedisTemplate.delete("cache:shop:"+id);
        return Result.ok();
    }

我们需要加上@Transactional事务注解来保证数据库与缓存操作的原子性

四、缓存穿透

缓存穿透:指客户端请求的数据在缓存和数据库中都不存在,这样缓存永远都不生效,这样大量的请求都会打到数据库,给数据库造成巨大压力
redis 缓存,Redis,缓存,redis,spring
常见的两种解决方案:
缓存空对象
这是一种简单暴力的方法,当请求缓存与数据库中都不存在的数据时往缓存中写一份空数据,防止给数据库造成巨大压力
优点:实现简单,维护方便
缺点:额外的内存消耗,可能造成短期的不一致(可以设置一个TTL)
redis 缓存,Redis,缓存,redis,spring
布隆过滤
布隆过滤器通过为位数据和多个哈希函数来实现判断,当请求查询缓存前会先对请求关键字进行布隆过滤器的判断,如果不存在直接返回,不再查询缓存或数据库
优点:内存占用较少,没有多余key
缺点:实现复杂,存在误判可能
redis 缓存,Redis,缓存,redis,spring
缓存穿透解决方案:
redis 缓存,Redis,缓存,redis,spring

public Shop queryWithPassThrough(Long id) {
        // 1. 从Redis 查询商铺缓存
        String shopJson = stringRedisTemplate.opsForValue().get("cache:shop:" + id);
        // 2. 判断是否存在
        if (StrUtil.isNotBlank(shopJson)) {
            // 存在返回
            Shop shop = JSONUtil.toBean(shopJson,Shop.class);
            return shop;
        }
        // 判断命中的是否为空值
        if(shopJson != null) {
            return null;
        }
        // 不存在,根据id查询数据库
        Shop shop = getById(id);
        // 数据库中不存在 存放空值
        if(shop == null) {
            // 将空值写入Redis
            stringRedisTemplate.opsForValue().set("cache:shop:" + id,"",2,TimeUnit.MINUTES);
            return null;
        }
        // 存在 写入redis
        stringRedisTemplate.opsForValue().set("cache:shop:" + id,JSONUtil.toJsonStr(shop),30, TimeUnit.MINUTES);
        return shop;
    }

当访问缓存和数据库都不存在的数据时,往缓存中写入一个空数据,并设置TTL。

缓存穿透解决方案有哪些?

  • 缓存null值
  • 布隆过滤
  • 增强id复杂度,避免被猜测id规律
  • 做好数据的基础格式校验
  • 加强用户权限校验
  • 做好热点参数的限流

五、缓存雪崩

缓存雪崩:指在同一时刻大量的缓存key同时失效或者Redis服务宕机,导致大量请求到达数据库,带来巨大压力
redis 缓存,Redis,缓存,redis,spring
面对这种同一时刻大量缓存失效或者Redis服务宕机的情况,我们有以下几种解决方案:

  • 给不同的Key的TTL添加随机值
  • 利用Redis集群提高服务的可用性
  • 给缓存业务添加降级限流策略
  • 给业务添加多级

六、缓存击穿

缓存击穿:也叫热点Key问题,就是一个被高并发访问并且缓存重建业务比较复杂的Key突然失效了,无数的请求访问会在瞬间给数据库带来巨大的冲击
redis 缓存,Redis,缓存,redis,spring
常见的解决方案:

  1. 互斥锁,该方案最大的问题是线程都在相互等待

redis 缓存,Redis,缓存,redis,spring

  1. 逻辑过期,设置一个expire字段,比较这个字段与当前时间判断是否过期
    redis 缓存,Redis,缓存,redis,spring
解决方案 优点 缺点
互斥锁 没有额外的内存消耗 保证一致性 实现简单 县城需要等待,性能受到影响 可能有死锁风险
逻辑过期 线程无需等待,性能较好 不保证一致性 有额外内存消耗 实现复杂

利用互斥锁解决缓存击穿问题
这里我们使用什么互斥锁呢?其实Redis中的setnx命令就是一个不错的选择
redis 缓存,Redis,缓存,redis,spring

// 加锁解锁
	private boolean tryLock(String key) {
        Boolean flg = stringRedisTemplate.opsForValue().setIfAbsent(key, "1", 10, TimeUnit.SECONDS);
        return BooleanUtil.isTrue(flg);
    }

    private void unLock(String key) {
        stringRedisTemplate.delete(key);
    }
// 缓存击穿
    public Shop queryWithMutex(Long id){
        // 1. 从Redis 查询商铺缓存
        String shopJson = stringRedisTemplate.opsForValue().get("cache:shop:" + id);
        // 2. 判断是否存在
        if (StrUtil.isNotBlank(shopJson)) {
            // 存在返回
            Shop shop = JSONUtil.toBean(shopJson,Shop.class);
            return shop;
        }
        // 判断命中的是否为空值
        if(shopJson != null) {
            return null;
        }
        // 4.实现缓存重建
        // 4.1获取互斥锁
        String lockKey = "lock:shop:" + id;
        Shop shop = null;
        try {
            boolean isLock = tryLock(lockKey);
            // 4.2失败,休眠重试
            if (!isLock) {
               Thread.sleep(50);
               return queryWithMutex(id);
            }
            // 4.3 成功,根据id查询数据库
            shop = getById(id);
            if(shop == null) {
                // 将空值写入Redis
                stringRedisTemplate.opsForValue().set("cache:shop:" + id,"",2,TimeUnit.MINUTES);
                return null;
            }
            // 存在 写入redis
            stringRedisTemplate.opsForValue().set("cache:shop:" + id,JSONUtil.toJsonStr(shop),30, TimeUnit.MINUTES);
        } catch (InterruptedException e) {
            throw new RuntimeException(e);
        } finally {
            unLock(lockKey);
        }
        return shop;
    }

基于逻辑过期方式解决缓存击穿问题:
redis 缓存,Redis,缓存,redis,spring
那既然我们要加一个逻辑字段,我们是怎么加,直接在实体类中增加吗?让实体类继承带有expire属性的类?这两种都不太好,因为都会都实体类进行修改。我们选择的是组合方式

@Data
public class RedisData {
    private LocalDateTime expireTime;
    private Object data;
}
// 写入数据时 + 一个逻辑过期字段
public void saveShop2Redis(Long id, Long expireSeconds) {
        // 1. 查询店铺数据
        Shop shop = getById(id);
        // 2. 封装逻辑过期时间
        RedisData redisData = new RedisData();
        redisData.setData(shop);
        redisData.setExpireTime(LocalDateTime.now().plusSeconds(expireSeconds));
        // 3. 写入Redis
        stringRedisTemplate.opsForValue().set(RedisConstants.CACHE_SHOP_KEY + id,JSONUtil.toJsonStr(redisData));
    }
private static final ExecutorService CACHE_REBUILD_EXECUTOR = Executors.newFixedThreadPool(10);
    public Shop queryWithLogicalExpire(Long id) {
        // 1. 从Redis 查询商铺缓存
        String shopJson = stringRedisTemplate.opsForValue().get("cache:shop:" + id);
        // 2. 判断是否存在
        if (StrUtil.isBlank(shopJson)) {
            // 不存在返回
            return null;
        }
        // 4. 命中,先把json反序列化为对象
        RedisData redisData = JSONUtil.toBean(shopJson, RedisData.class);
        Shop shop = JSONUtil.toBean((JSONObject) redisData.getData(),Shop.class);
        LocalDateTime expireTime = redisData.getExpireTime();
        // 5. 判断是否过期
        if(expireTime.isAfter(LocalDateTime.now())) {
            // 5.1 未过期 返回店铺信息
            return shop;
        }
        // 5.2 已过期, 缓存重建
        // 6 缓存重建
        String lockKey = "lock:shop:" + id;
        boolean isLock = tryLock(lockKey);
        // 6.1 获取互斥锁
        // 6.2 判断是否获取成功
        if (isLock) {
            // 6.3 成功,开启独立线程 实现缓存重建
            CACHE_REBUILD_EXECUTOR.submit(() -> {
                // 重建缓存
                try {
                    saveShop2Redis(id,30L);
                } catch (Exception e) {
                    throw new RuntimeException(e);
                } finally {
                    // 释放锁
                    unLock(lockKey);
                }
            });
        }
        // 6.4 返回过期商铺信息
        return shop;
    }

七、缓存工具封装

基于StringRedisTemplate封装一个缓存工具类,满足下列要求:

@Slf4j
@Component
public class CacheClient {

    private final StringRedisTemplate stringRedisTemplate;

    public CacheClient(StringRedisTemplate stringRedisTemplate) {
        this.stringRedisTemplate = stringRedisTemplate;
    }
}

1.将任意的Java对象序列化为json并存储在String类型的key中,并且可以设置TTL超时时间

	public void set(String key, Object value, Long time, TimeUnit unit) {
        stringRedisTemplate.opsForValue().set(key, JSONUtil.toJsonStr(value),time,unit);
    }

2.将任意的Java对象序列化为json并存储在String类型的key中,并且可以设置逻辑过期时间,用于处理缓存击穿问题

public void setWithLogicalExpire(String key,Object value,Long time,TimeUnit unit) {
        // 设置逻辑过期时间
        RedisData redisData = new RedisData();
        redisData.setExpireTime(LocalDateTime.now().plusSeconds(unit.toSeconds(time)));
        redisData.setData(value);
        // 写入Redis
        stringRedisTemplate.opsForValue().set(key,JSONUtil.toJsonStr(redisData));
    }

3.根据指定的key进行查询缓存,并反序列化为指定类型,利用缓存的空值方式解决缓存穿透问题

public <R,ID> R queryWithPassThrough(String keyPrefix, ID id, Class<R> type, Function<ID,R> dbFallback,Long time,TimeUnit unit) {
        String key = keyPrefix + id;
        // 从redis查询商铺缓存
        String json = stringRedisTemplate.opsForValue().get(key);
        // 判断是否存在
        if (StrUtil.isNotBlank(json)) {
            // 存在 直接返回
            return JSONUtil.toBean(json,type);
        }
        // 判断命中的是否为空值
        if (json != null) {
            return null;
        }
        // 不存在,根据id查询数据库
        R r = dbFallback.apply(id);
        // 不存在 将空值写入Redis
        if(r == null) {
            stringRedisTemplate.opsForValue().set(key,"",time,unit);
        }
        // 存在 写入redis
        set(key,r,time,unit);
        return r;
    }

4.根据指定的key查询缓存,并反序列化为指定类型,利用逻辑过期时间解决缓存击穿问题文章来源地址https://www.toymoban.com/news/detail-599771.html

private boolean tryLock(String key) {
        Boolean flg = stringRedisTemplate.opsForValue().setIfAbsent(key, "1", 10, TimeUnit.SECONDS);
        return BooleanUtil.isTrue(flg);
    }

    private void unLock(String key) {
        stringRedisTemplate.delete(key);
    }

    private static final ExecutorService CACHE_REBUILD_EXECUTOR = Executors.newFixedThreadPool(10);
    public <R,ID> R queryWithLogicalExpire(String keyPrefix,String lockPrefix,ID id,Class<R> type, Function<ID,R> dbFallback,
    Long time,TimeUnit unit) {
        String key = keyPrefix + id;
        // 1. 从Redis 查询商铺缓存
        String shopJson = stringRedisTemplate.opsForValue().get(key);
        // 2. 判断是否存在
        if (StrUtil.isBlank(shopJson)) {
            // 不存在返回
            return null;
        }
        // 4. 命中,先把json反序列化为对象
        RedisData redisData = JSONUtil.toBean(shopJson, RedisData.class);
        R r = JSONUtil.toBean((JSONObject) redisData.getData(),type);
        LocalDateTime expireTime = redisData.getExpireTime();
        // 5. 判断是否过期
        if(expireTime.isAfter(LocalDateTime.now())) {
            // 5.1 未过期 返回店铺信息
            return r;
        }
        // 5.2 已过期, 缓存重建
        // 6 缓存重建
        String lockKey = lockPrefix + id;
        boolean isLock = tryLock(lockKey);
        // 6.1 获取互斥锁
        // 6.2 判断是否获取成功
        if (isLock) {
            // 6.3 成功,开启独立线程 实现缓存重建
            CACHE_REBUILD_EXECUTOR.submit(() -> {
                // 重建缓存
                try {
                    // 查数据库
                    R r1 = dbFallback.apply(id);
                    // 写 Redis
                    setWithLogicalExpire(key,r1,time,unit);
                } catch (Exception e) {
                    throw new RuntimeException(e);
                } finally {
                    // 释放锁
                    unLock(lockKey);
                }
            });
        }
        // 6.4 返回过期商铺信息
        return r;
    }

到了这里,关于Redis缓存更新策略以及常见缓存问题的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • redis 三种缓存更新策略

    今天聊聊redis 三种缓存更新策略分别是: Cache Aside(旁路缓存)策略; Read/Write Through(读穿 / 写穿)策略; Write Back(写回)策略; 其中 Cache Aside策略是redis和Mysql使用的更新策略,另外两种策略主要使用在计算机系统上。 Cache Aside(旁路缓存)策略是最常用的策略,应用程

    2024年02月15日
    浏览(38)
  • Redis实战(3)——缓存模型与缓存更新策略

    1 什么是缓存? 缓存 就是数据交换的缓冲区, 是存贮数据的临时区,一般读写性能较高 textcolor{red}{是存贮数据的临时区,一般读写性能较高} 是存贮数据的临时区,一般读写性能较高 。缓存可在多个场景下使用 以一次 w e b 请求为例,演示不同阶段的缓存作用 textcolor{blue}

    2024年02月15日
    浏览(41)
  • Redis实战案例4-缓存更新策略

    缓存中的数据一致性问题(数据库更新数据,而Redis存的是旧数据) 内存淘汰策略:当内存很充足时,很长时间无法淘汰数据,所以很难控制淘汰,一致性差; 超时剔除:取决于TTL大小,可以达到控制目的,但是在TTL时间内也可能存在数据库更新从而Redis中变成旧数据; 主动

    2024年02月10日
    浏览(41)
  • Redis篇:缓存更新策略最佳实践

            缓存更新是redis为了节约内存而设计出来的一个东西,主要是因为内存数据宝贵,当我们向redis插入太多数据,此时就可能会导致 缓存中的数据过多 ,所以redis会对部分数据进行更新,或者把他叫为淘汰更合适,一般有以下三种淘汰策略。 内存淘汰: redis自动进行

    2024年04月24日
    浏览(34)
  • Redis缓存双写一致性之更新策略

    你只要用缓存,就可能会涉及到redis缓存与数据库双存储双写,你只要是双写,就一定会有数据一致性的问题,那么你如何解决一致性问题? 双写一致性,你先动缓存redis还是数据库mysql哪一个?why? 延时双删你做过吗?会有哪些问题? 有这么一种情况,微服务查询redis无m

    2024年02月05日
    浏览(60)
  • redis高级篇 缓存双写一致性之更新策略

    缓存通用查询3部曲 redis 中数据,返回redis 中的数据 redis 中没有,查询数据库并返回 完成第二部的同时,将数据库查询结果写到redis,redis和数据库数据一致. 谈谈双写一致性的理解 1.如果redis 中有数据:需要和数据库中的相同 2.如果redis 中无数据: 数据库中的值如果是最新的

    2024年02月06日
    浏览(62)
  • Redis 原理缓存过期、一致性hash、雪崩、穿透、并发、布隆、缓存更新策略、缓存数据库一致性

    redis的过期策略可以通过配置文件进行配置 redis会把设置了过期时间的key放在单独的字典中,定时遍历来删除到期的key。 1).每100ms从过期字典中 随机挑选20个,把其中过期的key删除; 2).如果过期的key占比超过1/4,重复步骤1 为了保证不会循环过度,导致卡顿,扫描时间上限

    2024年02月08日
    浏览(56)
  • Redis缓存问题与缓存更新机制

    目录 ​编辑  一、缓存问题  1.1 缓存穿透  1.1.1 问题来源  1.1.2 解决方案  1.1.2.1 缓存空对象  1.1.2.2 使用布隆过滤器  1.2 缓存击穿  1.2.1 问题来源  1.2.2 解决方案  1.2.2.1 设置热点数据永远不过期  1.2.2.2 新增后台定时更新缓存线程(逻辑不过期)  1.2.2.3 使用分布式互斥锁

    2024年02月12日
    浏览(31)
  • Redis常见缓存问题

    目录 缓存穿透 造成缓存穿透的原因 缓存穿透问题解决方案 1、缓存空对象返回 2、布隆过滤器 缓存失效(击穿) 缓存雪崩 热点缓存key重建优化 缓存与数据库双写不一致 1、双写不一致情况 2、读写并发不一致 解决方案 缓存穿透         缓存穿透是指查询一个根本不存在的数

    2024年01月22日
    浏览(40)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包