【MATLAB第57期】基于MATLAB的双隐含层BP神经网络回归预测模型(无工具箱版本及工具箱版本对比)

这篇具有很好参考价值的文章主要介绍了【MATLAB第57期】基于MATLAB的双隐含层BP神经网络回归预测模型(无工具箱版本及工具箱版本对比)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

【MATLAB第57期】基于MATLAB的双隐含层BP神经网络回归预测模型(无工具箱版本及工具箱版本对比)

一、无工具箱版本

1.数据设置

数据为案例数据 。103行样本,7输入1输出数据。

2.参数设置

训练函数 梯度下降
HiddenUnit1Num=10;%隐层1结点数
HiddenUnit2Num=10;%隐层2节点数
MaxEpochs=20000;%最大训练次数
TF1 = 'logsig';TF2 = 'logsig'; TF3 = 'purelin';%各层传输函数,TF3为输出层传输函数
lr=0.003;%学习率
E0=0.05;%目标误差

3.代码展示

%--------------两个隐层的BP算法-------------%
clear all;
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  导入数据
res = xlsread('数据集.xlsx');

%%  划分训练集和测试集
temp = randperm(103);
save temp temp
P_train = res(temp(1: 80), 1: 7)';
T_train = res(temp(1: 80), 8)';
M = size(P_train, 2);

P_test = res(temp(81: end), 1: 7)';
T_test = res(temp(81: end), 8)';
N = size(P_test, 2);

%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);


SamNum=size(p_train,2);%样本数
TestSamNum=size(p_test,2);%测试样本
HiddenUnit1Num=10;%隐层1结点数
HiddenUnit2Num=10;%隐层2节点数
InDim=size(p_train,1);%样本输入维数
OutDim=size(t_train,1);%样本输出维数
%根据目标函数获得样本输入输出

MaxEpochs=20000;%最大训练次数
lr=0.003;%学习率
E0=0.05;%目标误差
%产生扩展向量,及扩展样本输入%
W1Ex=[W1 B1];
W2Ex=[W2 B2];
W3Ex=[W3 B3];
SamInEx=[p_train' ones(SamNum,1)]';
for i=1:MaxEpochs
    %正向传播时第一隐层,第二隐层,及网络输出值%
    u=W1Ex*SamInEx;
    Hidden1Out=1./(1+exp(-u));
    Hidden1OutEx=[Hidden1Out' ones(SamNum,1)]';    %停止学习判断条件
    Error=t_train-NetworkOut;%是一个1*M的向量
    SSE=sum(Error.^2);%所有样本产生的误差之和
    if SSE<E0,break,end
    %计算反向传播误差
    Delta3=Error;%是一个横向量,包含样本的误差
    Dw3Ex=Delta3*Hidden2OutEx';
    for n=1:SamNum %对每一个样本分别计算
        Delta2=(W3'*Delta3(n)).*Hidden2Out(:,n).*(1-Hidden2Out(:,n));
        Delta2Store(:,n)=Delta2;
        Dw2Ex=Dw2Ex+Delta2*Hidden1OutEx(:,n)'; 
    end
    %更新权值

end
%% 测试集预测
v=size(p_test);
TestSamInEx=[p_test' ones(v(2),1)]';
u=W1Ex*TestSamInEx;
Hidden1Out=1./(1+exp(-u));
Hidden1OutEx=[Hidden1Out' ones(v(2),1)]';
u=W2Ex*Hidden1OutEx;
Hidden2Out=1./(1+exp(-u));
Hidden2OutEx=[Hidden2Out' ones(v(2),1)]';
TestNetworkOut=W3Ex*Hidden2OutEx;   %网络输出值
T_sim2 = mapminmax('reverse', TestNetworkOut, ps_output);

%%  均方根误差
error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N);

%%  绘图
figure
plot(1: M, T_train, 'r-*', 1: M, T_sim1, 'b-o', 'LineWidth', 1)
legend('真实值','预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'训练集预测结果对比'; ['RMSE=' num2str(error1)]};
title(string)
xlim([1, M])
grid

figure
plot(1: N, T_test, 'r-*', 1: N, T_sim2, 'b-o', 'LineWidth', 1)
legend('真实值','预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'测试集预测结果对比';['RMSE=' num2str(error2)]};
title(string)
xlim([1, N])
grid

%%  相关指标计算
% 决定系数 R2
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test -  T_sim2)^2 / norm(T_test -  mean(T_test ))^2;

disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])

% 平均绝对误差 MAE
mae1 = sum(abs(T_sim1 - T_train)) ./ M ;
mae2 = sum(abs(T_sim2 - T_test )) ./ N ;

disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])

% 平均相对误差 MBE
mbe1 = sum(T_sim1 - T_train) ./ M ;
mbe2 = sum(T_sim2 - T_test ) ./ N ;

disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])

4.效果展示

【MATLAB第57期】基于MATLAB的双隐含层BP神经网络回归预测模型(无工具箱版本及工具箱版本对比),matlab,神经网络,回归,BP,双隐含层,多层,回归预测
【MATLAB第57期】基于MATLAB的双隐含层BP神经网络回归预测模型(无工具箱版本及工具箱版本对比),matlab,神经网络,回归,BP,双隐含层,多层,回归预测
训练集数据的R2为:0.9022
测试集数据的R2为:0.87266
训练集数据的MAE为:1.8189
测试集数据的MAE为:2.1658
训练集数据的MBE为:-0.00088469
测试集数据的MBE为:0.3059

二、有工具箱版本

1.数据设置

数据与无工具版本相同,数据顺序也相同。

2.参数设置

训练函数 trainlm
NodeNum1 = 10; % 隐层第一层节点数
NodeNum2=10; % 隐层第二层节点数
net.trainParam.epochs=20000;%训练次数设置
net.trainParam.goal=0.05;%训练目标设置
net.trainParam.lr=0.003;%学习率设置,应设置为较少值,太大虽然会在开始加快收敛速度,但临近最佳点时,会产生动荡,而致使无法收敛
TF1 = 'logsig';TF2 = 'logsig'; TF3 = 'purelin';%各层传输函数,TF3为输出层传输函数
%如果训练结果不理想,可以尝试更改传输函数,以下这些是各类传输函数

3.代码展示

%--------------两个隐层的BP算法-------------%

% BP 神经网络用于预测
%网络为7输入,1输出
% 103组数据,其中80组为正常训练数据,23组为测试数据
clear all;
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  导入数据
res = xlsread('数据集.xlsx');

%%  划分训练集和测试集
temp = randperm(103);
load temp
P_train = res(temp(1: 80), 1: 7)';
T_train = res(temp(1: 80), 8)';
M = size(P_train, 2);

P_test = res(temp(81: end), 1: 7)';
T_test = res(temp(81: end), 8)';
N = size(P_test, 2);

%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

%---------------------------------------------------
%数据归一化处理
%mapminmax函数默认将数据归一化到[0,1],调用形式如下
%[y,ps] =%mapminmax(x,ymin,ymax)
%x需归化的数据输入
%ymin,ymax为需归化到的范围,不填默认为归化到[-1,1]
%y归一化后的样本数据
%ps处理设置,ps主要在结果反归一化中需要调用,或者使用同样的settings归一化另外一组数据
%---------------------------------------------------
%---------------------------------------------------
% 设置网络参数
%--------------------------------------------------- 
NodeNum1 = 10; % 隐层第一层节点数
NodeNum2=10; % 隐层第二层节点数
TypeNum = 1; % 输出维数

TF1 = 'logsig';TF2 = 'logsig'; TF3 = 'purelin';%各层传输函数,TF3为输出层传输函数
%如果训练结果不理想,可以尝试更改传输函数,以下这些是各类传输函数
%TF1 = 'tansig';TF2 = 'logsig';
%TF1 = 'logsig';TF2 = 'purelin';
%TF1 = 'tansig';TF2 = 'tansig';
%TF1 = 'logsig';TF2 = 'logsig';
%TF1 = 'purelin';TF2 = 'purelin'; 

%注意创建BP网络函数newff()的参数调用

%---------------------------------------------------
% 设置训练参数
%--------------------------------------------------- 
net.trainParam.epochs=20000;%训练次数设置
net.trainParam.goal=0.05;%训练目标设置
net.trainParam.lr=0.003;%学习率设置,应设置为较少值,太大虽然会在开始加快收敛速度,但临近最佳点时,会产生动荡,而致使无法收敛
%---------------------------------------------------
% 指定训练函数
%---------------------------------------------------
% net.trainFcn = 'traingd'; % 梯度下降算法
% net.trainFcn = 'traingdm'; % 动量梯度下降算法
%
% net.trainFcn = 'traingda'; % 变学习率梯度下降算法
% net.trainFcn = 'traingdx'; % 变学习率动量梯度下降算法
%
% (大型网络的首选算法)
% net.trainFcn = 'trainrp'; % RPROP(弹性BP)算法,内存需求最小
%
% (共轭梯度算法)
% net.trainFcn = 'traincgf'; % Fletcher-Reeves修正算法
% net.trainFcn = 'traincgp'; % Polak-Ribiere修正算法,内存需求比Fletcher-Reeves修正算法略大
% net.trainFcn = 'traincgb'; % Powell-Beal复位算法,内存需求比Polak-Ribiere修正算法略大
%
% (大型网络的首选算法)
%net.trainFcn = 'trainscg'; % Scaled Conjugate Gradient算法,内存需求与Fletcher-Reeves修正算法相同,计算量比上面三种算法都小很多
% net.trainFcn = 'trainbfg'; % Quasi-Newton Algorithms - BFGS Algorithm,计算量和内存需求均比共轭梯度算法大,但收敛比较快
% net.trainFcn = 'trainoss'; % One Step Secant Algorithm,计算量和内存需求均比BFGS算法小,比共轭梯度算法略大
%
% (中型网络的首选算法)
%net.trainFcn = 'trainlm'; % Levenberg-Marquardt算法,内存需求最大,收敛速度最快
% net.trainFcn = 'trainbr'; % 贝叶斯正则化算法
%
% 有代表性的五种算法为:'traingdx','trainrp','trainscg','trainoss', 'trainlm'

%%  训练网络
net = train(net, p_train, t_train);

%%  仿真测试
t_sim1 = sim(net, p_train);
t_sim2 = sim(net, p_test);

%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);

%%  均方根误差
error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N);

%%  绘图
figure
plot(1: M, T_train, 'r-*', 1: M, T_sim1, 'b-o', 'LineWidth', 1)
legend('真实值','预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'训练集预测结果对比'; ['RMSE=' num2str(error1)]};
title(string)
xlim([1, M])
grid

figure
plot(1: N, T_test, 'r-*', 1: N, T_sim2, 'b-o', 'LineWidth', 1)
legend('真实值','预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'测试集预测结果对比';['RMSE=' num2str(error2)]};
title(string)
xlim([1, N])
grid

%%  相关指标计算
% 决定系数 R2
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test -  T_sim2)^2 / norm(T_test -  mean(T_test ))^2;

disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])

% 平均绝对误差 MAE
mae1 = sum(abs(T_sim1 - T_train)) ./ M ;
mae2 = sum(abs(T_sim2 - T_test )) ./ N ;

disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])

% 平均相对误差 MBE
mbe1 = sum(T_sim1 - T_train) ./ M ;
mbe2 = sum(T_sim2 - T_test ) ./ N ;

disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])

4.效果展示

【MATLAB第57期】基于MATLAB的双隐含层BP神经网络回归预测模型(无工具箱版本及工具箱版本对比),matlab,神经网络,回归,BP,双隐含层,多层,回归预测
【MATLAB第57期】基于MATLAB的双隐含层BP神经网络回归预测模型(无工具箱版本及工具箱版本对比),matlab,神经网络,回归,BP,双隐含层,多层,回归预测
训练集数据的R2为:1
测试集数据的R2为:0.94759
训练集数据的MAE为:3.6159e-07
测试集数据的MAE为:1.0637
训练集数据的MBE为:-2.0744e-07
测试集数据的MBE为:-0.43051

三、总结

因工具箱版本和无工具箱版本训练方法不同,以及有工具箱版本内置默认参数较为丰富 ,如连续验证最大失败数量、训练集再划分样本等等参数 ,且trainlm函数功能强大,用代码编写比较复杂 。故有工具版计算结果较好,收敛速度较快,使用方便,而无工具箱版本则更能直观的观察数据变化以及能够更直观体现BP神经网络计算原理。

四、代码获取

私信回复“57期”即可获取下载链接。文章来源地址https://www.toymoban.com/news/detail-599856.html

到了这里,关于【MATLAB第57期】基于MATLAB的双隐含层BP神经网络回归预测模型(无工具箱版本及工具箱版本对比)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包